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TRACE FORMULAS FOR PERTURBATIONS
OF OPERATORS

WITH HILBERT-SCHMIDT RESOLVENTS
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Abstract. Trace formulas for self-adjoint perturbations V of self-adjoint operators H such
that V is in Schatten class were obtained in the works of L.S. Koplienko, M.G. Krein, and
the joint paper of D. Potapov, A. Skripka and F. Sukochev. In this article, we obtain an
analogous trace formula under the assumptions that the perturbation V is bounded and the
resolvent of H belongs to Hilbert-Schmidt class.
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1. INTRODUCTION

Let H be an unbounded self-adjoint operator, V a bounded self-adjoint operator on
a separable Hilbert space H, f a sufficiently nice scalar function, and let f(H) and
f(H + V ) be defined by the functional calculus. Consider the remainder of the Taylor
approximation

Rn,H,V (f) := f(H + V )−
n−1∑

k=0

1
k!
dk

dtk

∣∣∣
t=0

f(H + tV ),

where n ∈ N and the Gâteaux derivatives dk

dtk

∣∣∣
t=0

f(H + tV ) are evaluated in the
uniform operator topology. If a perturbation V = V ∗ is in the Schatten-von Neumann
ideal of compact operators Sn (see, e.g., [6]), then the following trace formula holds
(see [3–5])

Tr
(
Rn,H,V (f)

)
=
∫

R

f (n)(t)ηn(t) dt, (1.1)

where ηn = ηn,H,V is a real valued L1-function depending only on H and V .
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If the perturbations of the operators are not compact and no additional restriction on
the initial operator H is imposed, then the trace Tr of Rn,H,V (f) is usually undefined.
Noncompact perturbations mainly arise in the study of differential operators because
they are multiplication by functions defined on Rd, which are not compact operators.
In this case, the condition that the perturbations are in some Schatten-von Neumann
ideal of compact operators Sn gets replaced by the restriction on the resolvent of the
initial operators.

In this paper, we prove a trace formula similar to (1.1) under the different assump-
tions onH, V , and f . We assume that the resolvent ofH belongs to S2, V = V ∗ ∈ B(H)
(where B(H) is the algebra of bounded linear operators on H), and f ∈ Cn

c ((a, b))
(where Cn

c ((a, b)) is the space of n times continuously differentiable functions on R that
are compactly supported in (a, b) ⊂ R). We show that there exists a unique locally
finite real-valued measure µn = µn,H,V , n ≥ 3, such that the following trace formula
holds

Tr
(
Rn,H,V (f)

)
=
∫

R

f (n)(t)dµn(t). (1.2)

Similar formula for n = 1 and n = 2 but with the absolutely continuous measure µn

was established in [1] and [7], respectively. The formula obtained in those cases holds
for f ∈ Cn+1

c (R) whereas, the formula (1.2) can also be applied to f ∈ Cn
c (R).

We prove the result following delicate methods of noncommutative analysis
developed in [7]. We first show that Rn−1,H,V (f) and dn−1

dtn−1

∣∣
t=0f(H + tV ) are both

trace class operators and prove the estimate
∣∣Tr
(
Rn,H,V (f)

)∣∣ ≤ Cn,a,b,H,V · ‖f (n)‖L∞([a,b]),

where Cn,a,b,H,V is a constant depending on n, a, b, H, and V . Then, we use the Riesz
representation theorem for a functional in

(
Cc(R)

)∗ to find a unique locally finite
real-valued measure µn that satisfies (1.2).

We divide this paper into two sections. In the first section, we provide preliminaries
on operator derivatives and its trace norm estimates. In the second section, we prove
the main result.

2. PRELIMINARIES

We start the section with the following useful estimate for the resolvent operators and
which follows from the functional calculus of self-adjoint operators.

Lemma 2.1 ([2, Appendix B, Lemma 6]). Let H = H∗ be defined in H and W =
W ∗ ∈ B(H), then

(I + (H +W )2)−1 ≤ (I + ‖W‖+ ‖W‖2)(I +H2)−1.
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The following is a definition of the Gâteaux derivative of operator functions.
Definition 2.2. Let H be a self-adjoint (unbounded) operator in H and V = V ∗ ∈
B(H). Let f : R 7→ C be a bounded function. Then, the Gâteaux derivative of the
mapping H → f(H) at H in the direction V is defined by

d

ds

∣∣∣
s=0

f(H + sV ) = lim
s→0

f(H + sV )− f(H)
s

,

if the limit exists in the operator norm (uniform operator topology).
We need the following integral representation for the nth order Taylor remainder.

Lemma 2.3 ([7, Theorem 2.7]). Let H = H∗ be defined in H and V = V ∗ ∈ B(H).
If f ∈ Cn+1

c (R) , then

Rn,H,V (f) = 1
(n− 1)!

1∫

0

(1− t)n−1 d
n

dsn

∣∣∣
s=t

f(H + sV )dt,

where the integral is defined for every y ∈ H by

( 1∫

0

(1− t)n−1 d
n

dsn

∣∣∣
s=t

f(H + sV )dt
)
y =

1∫

0

(1− t)n−1 d
n

dsn

∣∣∣
s=t

f(H + sV )y dt.

Under the assumption (I + H2)−1/2 ∈ S2, we have the following trace norm
estimate for the nth order Gâteaux derivative.
Lemma 2.4 ([7, Lemma 3.6]). Let H = H∗ satisfy (I + H2)−1/2 ∈ S2 and let
V = V ∗ ∈ B(H). Denote u(t) = (1 + t2)1/2. Then, for every n ∈ N and f ∈ Cn+1

c (R),
1
n! · dn

dtn

∣∣∣
t=0

f(H + tV ) ∈ S1 and

∥∥∥ 1
n! ·

dn

dtn

∣∣∣
t=0

f(H + tV )
∥∥∥

1
≤ Cf,n · ‖(I +H2)−1/2‖2

2 · ‖V ‖n,

where

Cf,1 ≤
√

2
(
‖(fu2)′‖2 + ‖(fu2)′′‖2

)
+ 2‖fu2‖∞ (2.1)

and for n ≥ 2,

Cf,n ≤
√

2
n!

(
‖(fu2)(n)‖2 + ‖(fu2)(n+1)‖2

)

+ n(n+ 3)
2 · max

1≤k≤n

{
‖f‖∞, ‖fu‖∞,

√
2
k!

(
‖f (k)‖2 + ‖f (k+1)‖2

)
,

√
2
k!

(
‖(fu)(k)‖2 + ‖(fu)(k+1)‖2

)}

× const · max
2≤j≤n

(
‖u(j)‖2 + ‖u(j+1)‖2

)2
.

(2.2)
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Using Lemmas 2.1 and 2.4, we have the following lemma.

Lemma 2.5. Let H = H∗ satisfy (I +H2)−1/2 ∈ S2 and let V = V ∗ ∈ B(H). Denote
u(t) = (1+t2)1/2. Then, for every n ∈ N and f ∈ Cn+1

c (R), 1
n! · dn

dsn

∣∣∣
s=t

f(H+sV ) ∈ S1

and for all t ∈ (0, 1)
∥∥∥ 1
n! ·

dn

dsn

∣∣∣
s=t

f(H + sV )
∥∥∥

1
≤ Cf,n · ‖(I +H2)−1/2‖2

2 ·
(
‖V ‖n + ‖V ‖n+1 + ‖V ‖n+2),

where Cf,n satisfies (2.1) for n = 1 and (2.2) for n ≥ 2.

Proof. From Definition 2.2, it follows that

d

ds

∣∣∣
s=t

f(H + sV ) = d

ds

∣∣∣
s=0

f(H + (s+ t)V ).

Now using Lemma 2.4, we have 1
n! · dn

dsn

∣∣∣
s=t

f(H + sV ) ∈ S1 and

∥∥∥ 1
n! ·

dn

dsn

∣∣∣
s=t

f(H + sV )
∥∥∥

1
≤ Cf,n · ‖(I + (H + tV )2)−1/2‖2

2 · ‖V ‖n

≤ Cf,n · ‖(I +H2)−1/2‖2
2 ·
(
‖V ‖n + ‖V ‖n+1 + ‖V ‖n+2),

where the last inequality follows from Lemma 2.1 and the fact that t ∈ (0, 1).

We estimate the constant Cf,n in terms of the supremum norm of (n + 1)th
derivative of f .

Lemma 2.6. Let f ∈ Cn+1
c ((a, b)), n ∈ N , and u(t) = (1 + t2)1/2. If Ca,b,f,n satisfies

(2.1) for n = 1 and (2.2) for n ≥ 2, then

Ca,b,f,n ≤ ‖f (n+1)‖L∞([a,b]) · Ca,b,n, n ∈ N, (2.3)

where

Ca,b,1 = 24 ·max
{

1, (b− a)2
}
·max

{
2, ‖u2‖L∞([a,b]), ‖(u2)′‖L∞([a,b])

}
(2.4)

and for n ≥ 2,

Ca,b,n =
[4(b− a)1/2

n! + n(n+ 3)
2 ·max

{
1, 4(b− a)1/2

}

× const · max
2≤j≤n

(
‖u(j)‖L2([a,b]) + ‖u(j+1)‖L2([a,b])

)2]
· 2n ·max

{
1, (b− a)n+1

}

× max
0≤k≤n+1

{
2, ‖u2‖L∞([a,b]), ‖(u2)′‖L∞([a,b]), ‖u(k)‖L∞([a,b])

}
.

(2.5)
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Proof. We prove the case n ≥ 2. The case n = 1 is similar to that of n ≥ 2 and,
hence, omitted. Here, we denote ‖ · ‖2 = ‖ · ‖L2([a,b]) and ‖ · ‖∞ = ‖ · ‖L∞([a,b]).
For f ∈ Cn+1

c ((a, b)),

‖f (j)‖2 ≤ ‖f (j)‖∞ · (b− a)1/2, 0 ≤ j ≤ n+ 1. (2.6)

Using (2.6), we obtain

Ca,b,f,n

≤
√

2
n!

(
‖(fu2)(n)‖∞(b− a)1/2 + ‖(fu2)(n+1)‖∞(b− a)1/2

)

+ n(n+ 3)
2 · max

1≤k≤n

{
‖f‖∞, ‖fu‖∞,

√
2
k!

(
‖f (k)‖∞(b− a)1/2 + ‖f (k+1)‖∞(b− a)1/2

)
,

√
2
k!

(
‖(fu)(k)‖∞(b− a)1/2 + ‖(fu)(k+1)‖∞(b− a)1/2

)}

× const · max
2≤j≤n

(
‖u(j)‖2 + ‖u(j+1)‖2

)2
.

(2.7)
Since

‖(fg)(k)‖∞ =
∥∥∥

k∑

j=0

(
k

j

)
f (j)g(k−j)

∥∥∥
∞
≤

k∑

j=0

(
k

j

)
‖f (j)‖∞‖g(k−j)‖∞

≤ 2k · max
0≤j≤k

‖f (j)‖∞ · max
0≤l≤k

‖g(l)‖∞,

for 0 ≤ i ≤ n+ 1, we have

‖(fu2)(i)‖∞ ≤ 2i · max
0≤j≤i

‖f (j)‖∞ · max
0≤l≤i

‖(u2)(l)‖∞

≤ 2n+1 ·max
{
‖f‖∞, ‖f ′‖∞, . . . , ‖f (n+1)‖∞

}

×max
{
‖u2‖∞, ‖(u2)′‖∞, . . . , ‖(u2)(n+1)‖∞

}
.

(2.8)

Since, for f ∈ Cn+1
c ((a, b)),

‖f (j)‖∞ ≤ ‖f (n+1)‖∞ · (b− a)n+1−j , 0 ≤ j ≤ n+ 1,

(2.8) is bounded by

‖(fu2)(i)‖∞ ≤ 2n+1 · ‖f (n+1)‖∞ ·max
{

(b− a)n+1, (b− a)n, . . . , 1
}

×max
{
‖u2‖∞, ‖(u2)′‖∞, . . . , ‖(u2)(n+1)‖∞

}
,

(2.9)
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for 0 ≤ i ≤ n + 1. Since max
1≤i≤n+1

{1, (b − a)i} ≤ max{1, (b − a)n+1}, (u2)′′ ≡ 2, and

(u2)(n+1) = 0, for n ≥ 2, (2.9) is bounded by

‖(fu2)(i)‖∞ ≤ 2n+1 · ‖f (n+1)‖∞ ·max
{

1, (b− a)n+1
}
·max

{
2, ‖u2‖∞, ‖(u2)′‖∞

}

≤ 2n+1 · ‖f (n+1)‖∞ ·max
{

1, (b− a)n+1
}

× max
0≤k≤n+1

{
2, ‖u2‖∞, ‖(u2)′‖∞, ‖u(k)‖∞

}
, 0 ≤ i ≤ n+ 1.

(2.10)
Similarly, for 0 ≤ i ≤ n+ 1, we have

‖f (i)‖∞ ≤ 2n+1 · ‖f (n+1)‖∞ ·max
{

1, (b− a)n+1
}

× max
0≤k≤n+1

{
2, ‖u2‖∞, ‖(u2)′‖∞, ‖u(k)‖∞

}
,

(2.11)

and
‖(fu)(i)‖∞ ≤ 2n+1 · ‖f (n+1)‖∞ ·max

{
1, (b− a)n+1

}

× max
0≤k≤n+1

{
2, ‖u2‖∞, ‖(u2)′‖∞, ‖u(k)‖∞

}
.

(2.12)

Using (2.10)–(2.12), we obtain that

Ca,b,f,n ≤ ‖f (n+1)‖∞ ·
[23/2(b− a)1/2

n! + n(n+ 3)
2 ·max

{
1, 23/2(b− a)1/2

}

× const · max
2≤j≤n

(
‖u(j)‖2 + ‖u(j+1)‖2

)2]
· 2n ·max

{
1, (b− a)n+1

}

× max
0≤k≤n+1

{
2, ‖u2‖∞, ‖(u2)′‖∞, ‖u(k)‖∞

}

≤ ‖f (n+1)‖∞ ·
[4(b− a)1/2

n! + n(n+ 3)
2 ·max

{
1, 4(b− a)1/2

}

× const · max
2≤j≤n

(
‖u(j)‖2 + ‖u(j+1)‖2

)2]
· 2n ·max

{
1, (b− a)n+1

}

× max
0≤k≤n+1

{
2, ‖u2‖∞, ‖(u2)′‖∞, ‖u(k)‖∞

}

= ‖f (n+1)‖∞ · Ca,b,n, n ≥ 2,

where Ca,b,n is given by (2.5).

3. MAIN SECTION

Now we are in a position to prove the main result.
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Theorem 3.1. Let H = H∗ satisfy (I+H2)−1/2 ∈ S2 and let V = V ∗ ∈ B(H). Then,
there is a unique locally finite real-valued measure µn = µn,H,V , n ≥ 3, with total
variation on the segment [a, b], a, b ∈ R

∫

[a,b]

d|µn| ≤ 4 · Ca,b,n−1 · ‖(I +H2)−1‖1 · max
n−1≤k≤n+1

‖V ‖k, (3.1)

where Ca,b,k, k ≥ 2, is given by (2.5) such that

Tr
(
Rn,H,V (f)

)
=
∫

R

f (n)(λ)dµn(λ),

for f ∈ Cn
c ((a, b)).

Proof. By Lemmas 2.5 and 2.3, we have Rn−1,H,V (f) ∈ S1 and
∣∣∣Tr
(
Rn−1,H,V (f)

)∣∣∣ ≤ Ca,b,f,n−1 · ‖(I +H2)−1/2‖2
2 ·
(
‖V ‖n−1 + ‖V ‖n + ‖V ‖n+1),

(3.2)

where Ca,b,f,k satisfies (2.2) for k ≥ 2. By Lemma 2.6 and the fact that

‖(I +H2)−1/2‖2
2 = ‖(I +H2)−1‖1,

the inequality (3.2) is bounded by
∣∣∣Tr
(
Rn−1,H,V (f)

)∣∣∣

≤ ‖f (n)‖L∞([a,b]) · Ca,b,n−1 · ‖(I +H2)−1‖1 ·
(
‖V ‖n−1 + ‖V ‖n + ‖V ‖n+1).

(3.3)

Similarly, by Lemmas 2.4 and 2.6, we have 1
(n−1)! · dn−1

dtn−1

∣∣∣
t=0

f(H + tV ) ∈ S1 and

∣∣∣Tr
( 1

(n− 1)! ·
dn−1

dtn−1

∣∣∣
t=0

f(H + tV )
)∣∣∣

≤ ‖f (n)‖L∞([a,b]) · Ca,b,n−1 · ‖(I +H2)−1‖1 · ‖V ‖n−1.

(3.4)

Combining (3.3) and (3.4), we get
∣∣∣Tr
(
Rn,H,V (f)

)∣∣∣ ≤ ‖f (n)‖L∞([a,b]) · 4 · Ca,b,n−1 · ‖(I +H2)−1‖1 · max
n−1≤k≤n+1

‖V ‖k.

Hence, by the Riesz representation theorem for a functional in
(
Cc(R)

)∗, there is
a unique locally finite real-valued measure µn = µn,H,V , n ≥ 3, with total variation
on the segment [a, b] satisfying (3.1) such that

Tr
(
Rn,H,V (f)

)
=
∫

R

f (n)(λ)dµn(λ).
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