Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The presented results describe the effect of severe plastic deformation on the structure and mechanical properties of AA5083 and AA5754 alloys. Both materials were subjected to single hydrostatic extrusion (HE) and cumulative hydrostatic extrusion in the case of AA5083 and a combination of plastic deformation by equal-channel angular pressing (ECAP) with the next HE for AA5754. After the deformation, both alloys featured a homogeneous and finely divided microstructure with average grain size deq = 140 nm and 125 nm for AA5083 and AA5754, respectively. The selection of plastic forming parameters enabled a significant increase in the UTS tensile strength and YS yield stress in both alloys – UTS = 510 MPa and YS = 500 MPa for alloy AA5083 after cumulative HE, and 450 MPa and 440 MPa for alloy AA5754 after the combination of ECAP and HE, respectively. It has been shown on the example of AA5083 alloy that after the deformation the threads of the fasteners made of this material are more accurate and workable at lower cutting speeds, which saves the cutting tools. The resultant properties of AA5083 and AA5754 alloys match the minimum requirements for the strongest Al-Zn alloys of the 7xxx series, which, however, due to the considerably lower corrosion resistance, can be replaced in many responsible structures by the AA5xxx series Al-Mg alloys presented in this paper.
Rocznik
Tom
Strony
903--911
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokolowskis 29/37, 01-142 Warsaw, Poland
autor
- Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokolowskis 29/37, 01-142 Warsaw, Poland
autor
- Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokolowskis 29/37, 01-142 Warsaw, Poland
autor
- Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokolowskis 29/37, 01-142 Warsaw, Poland
autor
- Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokolowskis 29/37, 01-142 Warsaw, Poland
autor
- Institute of High Pressure Physics of the Polish Academy of Sciences UNIPRESS, Sokolowskis 29/37, 01-142 Warsaw, Poland
Bibliografia
- [1] S. Mousavi, M. Khaleghifar, M. Meratian, B. Sadeghi, and P. Cavaliere, “Effect of the equal channel angular pressing route on the microstructural and mechanical behavior of Al-5086 alloy”, Materialia, 4, 310–322 (2018).
- [2] L. Tan and T.R. Allen, “Effect of thermomechanical treatment on the corrosion of AA5083”, Corros. Sci. 52, 548–554 (2010).
- [3] P. Bazarnik, M. Lewandowska, M. Andrzejczuk, and K.J. Kurzydlowski, “The strength and thermal stability of Al–5Mg alloys nano-engineered using methods of metal forming”, Mater. Sci. Eng. A 556, 134–139 (2012).
- [4] M. Kulczyk, J. Skiba, and W. Pachla, “Microstructure and mechanical properties of AA5483 treated by a combination of ECAP and hydrostatic extrusion”, Arch. Metall. Mater. 59, 163–166 (2014).
- [5] http://www.mettex.co.uk/product-groups/fasteners/
- [6] Y. Liu, M. Liu, X. Chen, Y. Cao, H. J. Roven, M. Murashkin, R. Z.Valiev, and H. Zhou, “Effect of Mg on microstructure and mechanical properties of Al-Mg alloys produced by high pressure torsion”, Scr. Mater. 159, 137–141 (2019).
- [7] M. Kulczyk, J. Skiba, S. Przybysz, W. Pachla, P. Bazarnik, and M. Lewandowska, “High strength silicon bronze (C65500) obtained by hydrostatic extrusion”, Arch. Metall. Mater. 57, 859‒862 (2012).
- [8] W. Pachla, M. Kulczyk, A. Mazur, and M. Sus-Ryszkowska, “UFG and nanocrystalline microstructures produced by hydrostatic extrusion of multifilament wires”, Int. J. Mater. Res. 100, 984–990 (2009).
- [9] M. Kulczyk, W. Pachla, J. Godek, J. Smalc-Koziorowska, J. Skiba, S. Przybysz, M. Wróblewska, and M. Przybysz, “Improved compromise between the electrical conductivity and hardness of the thermo-mechanically treated CuCrZr alloy”, Mater. Sci. Eng. A 724, 45–52 (2018).
- [10] W. Pachla, A. Mazur, J. Skiba, M. Kulczyk, and S. Przybysz, “Wrought magnesium alloys ZM21, ZW3 and WE43 processed by hydrostatic extrusion with back pressure”, Arch. Metall. Mater. 57, 485–493 (2012).
- [11] W. Pachla, M. Kulczyk, S. Przybysz, J. Skiba, K. Wojciechowski, M. Przybysz, K. Topolski, A. Sobolewski, and M. Charkiewicz, “Effect of severe plastic deformation realized by hydrostatic extrusion and rotary swaging on the properties of CP Ti grade 2”, J. Mater. Process. Technol. 221, 255–268 (2015).
- [12] M. Kulczyk, W. Pachla, A. Mazur, M. Sus-Ryszkowska, N. Krasilnikov, and K.J. Kurzydłowski, “Producing bulk nanocrystalline materials by combined hydrostatic extrusion and equal channel angular pressing”, Mater. Sci. Poland 25(4), 991–999 (2007).
- [13] W. Pachla, J. Skiba, M. Kulczyk, S. Przybysz, M. Przybysz, M. Wróblewska, R. Diduszko, R. Stępniak, J. Bajorek, M. Radomski, and W. Fąfara, “Nanostructurization of 316L type austenitic stainless steels by hydrostatic extrusion”, Mater. Sci. Eng. A 615, 116–127 (2014).
- [14] S. Przybysz, M. Kulczyk, W. Pachla, J. Skiba, M. Wróblewska, J. Mizera, and D. Moszczyńska, “Anisotropy of mechanical and structural properties in AA 6060 aluminum alloy following hydrostatic extrusion process”, Bull. Pol. Ac.: Tech. 67(4), 709–717 (2019).
- [15] N. Izairi, F. Ajredini, A. Veveçka-Priftaj, and M. Ristova, “Enhancement of mechanical properties of the AA5754 aluminum alloy with a severe plastic deformation”, Materials and Technology 48(3), 385‒388 (2014).
- [16] A. Veveçka, P. Cavaliere, M. Cabbibo, E. Evangelista, and T.G. Langdon, “Strengthening of a commercial Al-5754 alloy using equal-channel angular pressing”, J. Mater. Sci. Lett. 20, 1601–1603 (2001).
- [17] S.-Y. Changa, B.-D. Ahnb, S.-K. Hongc, S. Kamadod, and Y. Kojimad, “Dong Hyuk Shin Tensile deformation characteristics of a nano-structured 5083 Al alloy”, J. Alloy. Compd. 386, 197–201 (2005).
- [18] J.S. Choi, S. Nawaz, S.K. Hwang, H.C. Lee, and Y.T. Im, “Forgeability of ultra-fine grained aluminum alloy for bolt forming”, Int. J. Mech. Sci. 52, 1269–1276 (2010).
- [19] J.H. Kim, S.K. Hwang, Y.T. Im, I.H. Son, and C.M. Bae, “High-strength bolt-forming of fine-grained aluminum alloy 6061 with a continuous hybrid proces” , Mater. Sci. Eng. A 552, 316–322 (2012).
- [20] J.S. Choi, Y.G. Jin, H.C. Lee, and Y.T. Im, “High strength bolt manufacturing of ultra-fine grained aluminium alloy 6061”, Materials Transactions, 52(2), 173–178 (2011).
- [21] T. Wejrzanowski, W.L. Spychalski, K. Różniatowski, and K.J. Kurzydłowski, “Image based analysis of complex microstructures of engineering materials”, Int. J. Appl. Math. Comput. Sci. 18(1), 33–39 (2008).
- [22] M. Kulczyk, B. Zysk, M. Lewandowska, and K. J. Kurzydlowski, “Grain refinement in CuCrZr by SPD processing”, Phys. Status Solidi A, 207(5), 1136–1138 (2010).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-979e4a93-d97c-4d27-b08b-59c591a65442