PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Finite element modelling and static shape control of a functionally graded piezoelectric beam

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A finite element model is developed for discretization and analysis of the functionally graded piezoelectric material (FGPM) beam based on the Timoshenko beam theory and assuming linear constitutive relation for the corresponding piezoelectric material behavior. Results obtained using the developed finite element code are compared with the available experimental and numerical results for smart structures with and without graded properties. Static shape control of the beam is conducted using the Buildup Voltage Distribution (BVD) algorithm by implementing this method in the finite element routine. Numerical simulations have been performed to study the performance of the shape control algorithm by optimizing the distribution of the applied voltages. Furthermore, the effect of the number of iterations on the result accuracy as well as the variation of the control voltage distribution with the number of discretized regions and the volume fractions of the constituent material is studied. A fast numerical convergence with good accuracy is observed for the shape control of FGPM beams using the developed method. The proposed technique is a good candidate for the modeling, analysis, and control of smart structures with graded properties.
Rocznik
Strony
469--492
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • School of Engineering Science, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
Bibliografia
  • 1. S.S. Rao, M. Sunar, Piezoelectricity and its use in disturbance sensing and control of flexible structures: a survey, Applied Mechanics Reviews, 47, 113–123, 1994.
  • 2. Z. Zhong, E.T. Shang, Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate, International Journal of Solids and Structures, 40, 5335–5352, 2003.
  • 3. C.C.M. Wu, M. Kahn, W. Moy, Piezoelectric ceramics with functional gradients: a new application in material design, Journal of American Ceramics Society, 79, 809–812, 1996.
  • 4. W.F. Shelley II, S. Wan, K.J. Bowman, Functionally graded piezoelectric ceramics, Material Science Forum, 308–311, 515–520, 1999.
  • 5. P. Sharma, B. Gupta, S. K. Rathore, A. Khinchi, M. Gautam, Computational characteristics of an exponentially functionally graded piezoelectric beam, International Journal on Interactive Design and Manufacturing, 1–7, 2022.
  • 6. Z.F. Shi, Y. Chen, functionally graded piezoelectric cantilever beam under load, Archive of Applied Mechanics, 74, 237–247, 2004.
  • 7. J. Yang, H.J. Xiang, Thermo-electro-mechanical characteristics of functionally graded piezoelectric actuators, Smart Materials and Structures, 16, 784–797, 2007.
  • 8. A. Komeili, A.H. Akbarzadeh, A. Doroushi, M.R. Eslami, Static analysis of functionally graded piezoelectric beams under thermo-electro-mechanical loads, Advances in Mechanical Engineering, 3, 153731, 2011.
  • 9. B.G. Fitzpatrick, Shape matching with smart material structures using piezoceramic actuators, Journal of Intelligent Material Systems and Structures, 8, 876–882,1997.
  • 10. B.N. Agrawal, K.E. Treanor, Shape control of statically indeterminate laminated beams with piezoelectric actuators, Smart Materials and Structures, 8, 729–740, 1999.
  • 11. M. Kekana, A static shape control model for piezo-elastic composite structures, Composite Structures, 59, 129–135, 2003.
  • 12. M. Kekana, P. Tabakov, Static control of composite plates using piezoelectric sensor and actuator techniques, Smart Materials and Structures, 14, 349–353, 2005.
  • 13. D.B. Koconis, L.P. Kollar, Shape control of composite plates and shells with embedded actuators. I. Voltages specified, Journal of Composite Materials, 28, 5, 415–458, 1994.
  • 14. K.M. Liew, X.Q. He, R. Tapabrata, On the use of computational intelligence in the optimal shape control of functionally graded smart plates, Computer Methods in Applied Mechanics and Engineering, 193, 4475–4492, 2004.
  • 15. K.M. Liew, X.Q. He, S.A. Meguid, Optimal shape control of functionally grade smart plates using genetic algorithms, Computational Mechanics, 33, 245–253, 2004.
  • 16. Y. Yu, X.N. Zhang, S.L. Xie, Optimal shape control of a beam using piezoelectric actuators with low control voltage, Smart Material and Structures, 18, 095006, 2009.
  • 17. S. da Mota Silva, R. Ribeiro, J. Dias Rodrigues, M.A.P. Vaz, J.M. Monteiro, The application of genetic algorithms for shape control with piezoelectric patches – an experimental comparison, Smart Materials and Structures, 13, 220–226, 2004.
  • 18. H. Irschik, review on static and dynamic shape control of structures by piezoelectric actuation, Engineering Structures, 24, 5–11, 2002.
  • 19. C. Chee, L. Tong, G. Steven, A buildup voltage distribution (BVD) algorithm for shape control of smart plate structures, Computational Mechanics, 26, 115–128, 2000.
  • 20. S. Kapuria, M. Bhattacharyya, A.N. Kumar, Bending and free vibration response of layered functionally graded beams: a theoretical model and its experimental validation, Composite Structures, 82, 3, 390–402, 2008.
  • 21. T. Mori, K. Tanaka, Average stress in matrix and average elastic energy of materials with misfitting inclusions, Acta Metallurgica, 21, 5, 571–574, 1973.
  • 22. K.M. Liew, X.Q. He, T.Y. Ng, S. Sivashanker, Active control of FGM plates subjected to a temperature gradient: Modeling via finite element method based on FSDT, International Journal of Numerical Methods in Engineering, 52, 1253–1271, 2001.
  • 23. M.C. Ray, H.M. Sachade, Finite element analysis of smart functionally graded plates, International Journal of Solids and Structures, 43, 5468–5484, 2006.
  • 24. K.M. Liew, X.Q. He, T.Y. NG, S. Kitipornchai, Finite element piezothermoelasticity analysis and the active control of FGM plates with integrated piezoelectric sensors and actuators, Computational Mechanics, 31, 350–358, 2002.
  • 25. M. Shakeri, S.N. Sadeghi, M. Javanbakht, H. Hatamikian, Dynamic analysis of functionally graded plate integrated with two piezoelectric layers, based on a threedimensional elasticity solution, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223, 1297–1309, 2009.
  • 26. M. Simsek, Static analysis of a functionally graded beam under a uniformly distributed load by Ritz method, International Journal of Engineering and Applied Sciences, 1, 1–11, 2009.
  • 27. S. Kapuria, M.Y. Yasin, Active vibration control of piezoelectric laminated beams with electroded actuators and sensors using an efficient finite element involving an electric node, Smart Materials and Structures, 19, 4, 045019, 2010.
  • 28. M.Y. Yasin, B. Prakash, A.H. Khan, Finite element model based on an efficient layerwise theory for dynamics and active vibration control of smart functionally graded beams, Materials Research Express, 7, 2, 025703, 2020.
  • 29. Q.M. Wang, Q. Zhang, X. Baomin, L. Ruibin, L.E. Cross, Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields, Journal of Applied Physics, 86, 6, 3352–3360, 1999.
  • 30. M.Y. Yasin, B. Prakash, N. ur Rahman, M.N. Alam, A.H. Khan, Design, fabrication, nonlinear analysis, and experimental validation for an active sandwich beam in strong electric field and thermal environment, Journal of Sound and Vibration, 117828, 2023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-979d4398-543a-453d-bc41-81e7911d4a32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.