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Finite element modelling and static shape control
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A finite element model is developed for discretization and analysis of the func-
tionally graded piezoelectric material (FGPM) beam based on the Timoshenko beam
theory and assuming linear constitutive relation for the corresponding piezoelectric
material behavior. Results obtained using the developed finite element code are com-
pared with the available experimental and numerical results for smart structures with
and without graded properties. Static shape control of the beam is conducted using
the Buildup Voltage Distribution (BVD) algorithm by implementing this method
in the finite element routine. Numerical simulations have been performed to study
the performance of the shape control algorithm by optimizing the distribution of the
applied voltages. Furthermore, the effect of the number of iterations on the result
accuracy as well as the variation of the control voltage distribution with the number
of discretized regions and the volume fractions of the constituent material is studied.
A fast numerical convergence with good accuracy is observed for the shape control
of FGPM beams using the developed method. The proposed technique is a good
candidate for the modeling, analysis, and control of smart structures with graded
properties.
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Notation

b beam width,
[Brb], [Brs], [Btb], [Bts] strain–displacement matrices,
[Bi

p], [Bo
p] potential–electric field matrices,

[Cb], [Cs] elasticity coefficients matrices,
{dr}, {dt} generalized rotational and translational displacement variables,
{der}, {det} generalized nodal rotational and translational displacement vectors,
dV voltage added to (or subtracted from) current voltages of regions in

each iteration in BVD algorithm,
D electrical displacement vector,
[eb], [es] piezoelectric coefficient matrices,
{Ei}, {Eo} electric field vectors,
EP total potential energy,
[Ftp], [Frp] global electro-elastic matrices,
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[F e
pt], [F e

pr], [F e
rp], [F e

tp] elemental electro-elastic coupling matrices,
h beam thickness,
Ir, It identity matrices,
[Krr], [Krt], [Ktr], [Ktt] global stiffness matrices,
[Ke

rr], [Ke
rt], [Ke

tr], [Ke
tt] elemental stiffness matrices,

[Ke
D] elemental dielectric stiffness matrix,

Lshape objective function of the BVD algorithm,
ni the shape function of natural coordinates associated with the node i,
Nn total number of nodes in BVD algorithm,
Np total number of regions in BVD algorithm,
[Nr], [Nt] shape function matrices,
P an effective material property of the beam,
PU , PV material properties at the top and bottom surfaces of the beam,
{R} global nodal mechanical force vector,
{Re} elemental load vector,
[S] Influence Coefficient (IC) matrix in BVD algorithm,
SR Selection Rate in BVD algorithm,
U , W displacements along x and z axes,
u0, w0 generalized displacements of mid-line points along xand z axes,
VU , VL volume fractions of FGPM constituent materials,
w∗

c normalized calculated displacements of nodes at the current iteration
in BVD algorithm,

w∗
d normalized desired displacements of nodes in BVD algorithm,
{Xt}, {Xr} global nodal generalized displacement vectors,
{εb}, {εs} in-plane and transverse shear strain vectors,
{εbt}, {εbr}, {εst}, {εsr} generalized strain vectors,
εx, εxz normal and transverse shear strains,
[ηi], [ηo] dielectric permittivity coefficient matrices,
γ parameter for selection of regions in BVD algorithm,
λ volume fraction index of FGPM,
ϕ electric potential function,
ϕ0 generalized electric potential function of top surface,
{ϕp

0} initial voltage distribution in BVD algorithm,
{Φ} global nodal electric potential vector,
ψ generalized rotation of the normal to the mid-line,
{σb}, {σs} in-plane and transverse shear stress vectors.

1. Introduction

Piezoelectric materials have been widely used as actuators and sen-
sors for the design of smart structures and electromechanical systems [1]. Piezo-
electric actuators and sensors are often made by bonding piezoelectric patches
to achieve better performance and are often called layered piezoelectric mate-
rials. One issue of the layered piezoelectric patches is the creep of the bond-
ing at elevated temperatures and existence of interfacial stress concentrations
which result in microcrack initiation and propagation across the interface and
as a result early failure of the structure [2]. Thus a class of piezoelectric ma-
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terials, called functionally graded piezoelectric materials (FGPMs), has been
introduced to resolve the issues of layered piezoelectric materials [3]. FGPMs
have no distinct interfaces and their material properties vary continuously in
one (or more) direction(s) [4]. The mechanical beahvior analysis of FGPMs has
been of great interest for researchers. Sharma et al. [5] used the general differ-
ential quadrature method to assess the fundamental frequencies of exponentially
FGPM beams. Shi and Chen [6]derived analytical solutions for bending of can-
tilever FGPM beams subjected to different loadings. Yang and Xiang [7] used
differential quadrature method to analyze the thermo-electro-mechanical behav-
ior of monomorph, bimorph, and multimorph FGPM beams. Komeili et al. [8]
used a combined finite element-Fourier series method for static analysis of func-
tionally graded piezoelectric beams under various loading types and considering
verious beam theories. The first objective of this paper is to develop a finite
element model for static bending analysis of FGPM beams considering shear
effects. This model is then used for the purpose of the static shape control of the
beam.

Smart structures with embedded or integrated piezoelectric sensors and ac-
tuators are often used for the vibration and shape control of structures. Shape
control involves activating the structure in order to achieve a certain desired
shape. Though shape control of smart structures is important, vibration con-
trol of smart structures made of FGPMs has been of more interest to the re-
searchers [9–12]. Previous works have been focused on the shape control of struc-
tures using integrated or embedded piezoelectric actuators. Koconis et al. [13]
were among the first to investigate the effect of input voltages for piezoelectric
actuators on the shape control of smart structures. Liew et al. [14, 15] used
genetic algorithms and computational intelligence for shape control of function-
ally graded smart plates containing patches of piezoelectric sensors and actua-
tors. They obtained the optimum voltage distribution for the open loop control
as well as displacement gain values for the closed loop feedback control when
patches located on one side of the plate were used as sensors. Yu et al. [16]
used laminated piezoelectric actuators for the shape control of a cantilever beam
structure with a low control voltage. Assumptions of Timoshenko’s beam the-
ory and a linear constitutive law for describing piezoelectric material behavior
were used in their work and laminated piezoelectric actuators were used for the
purpose of shape control. Genetic algorithm was used to derive voltages of ac-
tuators. They concluded that over increasing the number of piezoelectric layers,
suppression of the beam deformation improves. S. da Mota Silva et al. [17]
obtained numerical results for the shape control of composite structures with
piezoelectric patches using the genetic algorithm and validated their results
with the experimental data. Maximum error of fifteen percent was reported
between their simulation and experimental results for obtaining the desired
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shape. A more comprehensive review on the static and dynamic shape control of
structures by piezoelectric actuation has been presented in the review work by
Irschik [18].

The second objective of this paper is the shape control of a functionally
graded piezoelectric beam based on the linear piezoelectric theory. The Buildup
Voltage Distribution (BVD) algorithm [19] has been used to determine the input
voltage distribution across the beam surfaces. The method is implemented in the
afore mentioned finite element model. Effects of the variation of volume fraction
index and the number of regions on the applied voltage are examined. It is shown
that the developed technique and its corresponding finite element code produce
accurate results for the shape control of smart FGPM structures.

2. Functionally graded piezoelectric beam

Figure 1 shows a functionally graded piezoelectric beam of length L and
height h in which x and z denote the longitudinal and through thickness di-
rections of the beam, respectively. The material composition varies smoothly
through the thickness of the beam structure. Here, it is assumed that the mate-
rial composition varies continuously based on a power law distribution through
the beam thickness; therefore, an effective material property (except for the
Poisson ratio) can be defined as follows [20]:

(2.1) P (z) = PUVU + PLVL,

where P (z) is the effective material property of the beam, PU and PV are the
material properties at the top and bottom of the beam, respectively, and VU
and VL are the corresponding volume fractions of the materials defined by:

(2.2) VU =

(
z

h
+

1

2

)λ
, VL = 1−

(
z

h
+

1

2

)λ
,

Fig. 1. Schematic diagram of a functionally graded piezoelectric beam.
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where λ represents the volume fraction index of a functionally graded material.
It should be noted that rule of mixtures used here to derive the effective material
properties of FGPM may not yield accurate results as discussed in [20]. Other
models such as the Mori–Tanaka micromechanics model [21] may be used to
derive effective material properties, as it has no effect on the derivation of FE
formulation and the shape control algorithm developed here. The use of rule
of mixtures here is only because of its wide-spread use and the implementation
simplicity.

According to the Timoshenko beam theory, the displacement field is given
by [7]:

U(x, z) = u0(x) + zψ(x),(2.3)
W (x, z) = w0(x),(2.4)

where U andW are the displacements of any point in the beam along the x and z
axes, respectively; u0 and w0 are the generalized displacements of the point (x)
on the mid-line (z = 0) in the respective directions, and ψ is the generalized
rotation of the normal to the point x on the mid-line (z = 0). The generalized
displacement variables can be separated into translational {dt} and rotational
{dr} variables as follow [23]:

(2.5) {dt} = [ u0 w0 ], {dr} = [ψ].

The strain field at any point of the beam is described by the in-plane strain
component {εb} and the transverse shear strain component {εs} as follows:

(2.6) {εb} = [εx], {εs} = [εxz],

where εx is the normal strain along the x direction and εxz is the transverse shear
strain. Assuming a linear strain–displacement relation, the in-plane strain vector
{εb} and the transverse shear strain vector {εs} can be derived from Eq. (2.5)
as follow:

(2.7) {εb} = {εbt}+ z{εbr}, {εs} = {εst}+ {εsr},

where the generalized strain vectors {εbt}, {εbr}, {εst}, and {εsr} are given by:

(2.8) {εbt} =

[
∂u0
∂x

]
, {εbr} =

[
∂ψ

∂x

]
, {εst} =

[
∂w0

∂x

]
, {εsr} = [ψ].

For a piezoelectric material under the application of small elastic strains
a linear constitutive relation can be assumed as follows [24]:

σij = Cijklεkl − elijEl,(2.9)
Di = eiklεkl − ηilEl,(2.10)



474 I. Eshraghi

where σij and εkl are the stress and strain tensors, respectively, Di represents
the electrical displacement vector, El = −ϕ,l is the electric field vector, and ϕ
is the electric potential. Cijkl denotes the fourth order elasticity tensor, eikl is
the piezoelectric constant matrix, and ηil is the dielectric permittivity coefficient
matrix. Using equations (2.7), (2.9), and (2.10), the set of linear constitutive
relations for the piezoelectric material can be rewritten as follows:

{σb} = [Cb]{εb} − [eb]{Eo},(2.11)
{σs} = [Cs]{εs} − [es]{Ei},(2.12)

{Do} = [eb]
T {εb}+ [ηo]{Eo},(2.13)

{Do} = [eb]
T {εb}+ [ηo]{Eo}.(2.14)

The elasticity matrices [Cb] and [Cs], the piezoelectric coefficient matrices [eb]
and [es], the dielectric permittivity coefficient matrix [η] of piezoelectric materials
used in this study are defined in the appendix.

It is assumed that the variation of the electric potential function ϕ across the
thickness is linear; as a result, the electric potential function can be expressed
as follows [23]:

(2.15) ϕ(x, z) = ϕ0(x)

(
z

h
+

1

2

)
,

where ϕ0 is the generalized electric potential function at any arbitrary point on
the top surface of the beam.

3. Finite element formulation

The total potential energy of the FGPM beam is given by [23]:

(3.1) EP =
1

2

[∫
ϑ

({εb}T {σb}+ {εs}T {σs}) dϑ

−
∫
ϑ

({Eo}T {Do}+ {Ei}T {Di}) dϑ
]
−
∫
S

{d}T {fs} dS − {d}T {fc},

where {fs} and {fc} are the externally applied surface traction vector acting
over a surface area S and the external concentrated force, respectively, and ϑ
represents the volume of the domain under consideration. Considering isopara-
metric line elements with three nodes for FE discretization of the beam and
using Eq. (2.5), the general displacement vectors of the ith (i = 1, 2, 3) node of
the element can be expressed as follow:

(3.2) {dti} = [ u0i w0i ]T , {dri} = [ψi].
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Consequently, the generalized displacement vectors at any arbitrary point
within the element can be written by:

(3.3) {dt} = [Nt]{det}, {dr} = [Nr]{der}.

The nodal generalized translational displacement vector {det}, the nodal gen-
eralized rotational displacement vector {der} and the shape function matrices
[Nt] and [Nr] are given by:

{det} = [ {dt1}T {dt2}T {dt3}T ]T , {der} = [ {dr1} {dr2} {dr3} ]T ,(3.4)

[Nt] = [Nt1 Nt2 Nt3 ], [Nr] = [Nr1 Nr2 Nr3 ],(3.5)
Nti = niIt, Nri = niIr,(3.6)

where, It and Ir are the identity matrices and ni is the shape function of natural
coordinates associated with the ith node. Considering Eqs. (2.7), (2.8), and (3.3),
the strain vectors at any point of the element can be expressed as follow:

{εb} = [Btb]{det}+ z[Brb]{der},(3.7)
{εs} = [Bts]{det}+ [Brs]{der},(3.8)

where the strain–displacement matrices [Btb], [Brb], [Bts], and [Brs] are given
by:

[Btb] = [Btb1 Btb2 Btb3 ], [Brb] = [Brb1 Brb2 Brb3 ],(3.9)

[Bts] = [Bts1 Bts2 Bts3 ], [Brs] = [Brs1 Brs2 Brs3 ],(3.10)

where

(3.11) [Btbi] = [ ∂ni
∂x 0 ], [Brbi] =

∂ni
∂x

, [Btbi] = [ 0 ∂ni
∂x

], [Brsi] = ni.

The generalized electric potential vector at any point within the element is
given by

(3.12) ϕ0 = [Nϕ]{ϕe0},

where {ϕe0} = [ϕ01 ϕ02 ϕ03 ] and [Nϕ] = [ n1 n2 n3 ]. Using electric-potential
relations in combination with Eqs. (2.15) and (3.12), the electric field vector is
expressed in terms of the nodal generalized electric potential degrees of free-
dom {ϕe0} as follows:

(3.13) {Ei} = [Zip][B
i
p]{ϕe0}, {Eo} = [Zop ][Bo

p]{ϕe0},
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where [Zip] = −
(
z
h + 1

2

)
, [Zop ] = −

(
1
h

)
, [Bi

p] = [Bi
p1 B

i
p2 B

i
p3 ] and [Bo

p] =

[Bo
p1 B

o
p2 B

o
p3 ]. Bi

pj and B
o
pj are defined as follow:

(3.14) [Bi
pj ] =

[
∂nj
∂x

]
, [Bo

pj ] = [nj ].

Substituting Eqs. (2.11)–(2.14) into (3.1) and using (3.7), (3.8), and (3.13),
the total potential energy (EeP ) of a typical element of the FGPM beam is ob-
tained as follows:

(3.15) EeP =
1

2

[
{det}T [Ke

tt]{det}+ {det}T [Ke
tr]{der}+ {der}T [Ke

rt]{det}

+ {der}T [Ke
rr]{der} − {det}T [F etp]{ϕe0} − {der}T [F erp]{ϕe0}

− {ϕe0}T [F ept]{det} − {ϕe0}T [F epr]{der} − {ϕe0}T [Ke
D]{ϕe0}

]
− {det}T {Re}.

The elemental stiffness matrices [Ke
tt], [Ke

tr], [Ke
rt],and [Ke

rr], the elemental
electro-elastic coupling matrices [F etp], [F erp], [F ept] and [F epr], the elemental dielec-
tric stiffness matrix [Ke

D], and the elemental load vector {Re} are defined in the
appendix. It is worth mentioning that decoupled formulations for the elemental
bending and shear stiffness matrices are used here and as a result a selective inte-
gration scheme can be adopted to evaluate the corresponding element matrices.
Upon applying the principle of minimum total potential energy, i.e., δEeP = 0,
the following governing equilibrium equations for an element can be obtained:

[Ke
tt]{det}+ [Ke

tr]{der} = [F etp]{ϕe0}+ {Re},(3.16)

[Ke
rt]{det}+ [Ke

rr]{der} = [F erp]{ϕe0}.(3.17)

For the purpose of shape control, electric potential (voltage) is applied at the
top and bottom of the beam. Therefore, δ{ϕe0} = 0, which leads to the derivation
of the above governing equations for each discretized element. Upon assembling
the equations and considering the element nodal continuity, the global equations
of equilibrium are written as follow:

[Ktt]{Xt}+ [Ktr]{Xr} = [Ftp]{Φ}+ {R},(3.18)
[Krt]{Xt}+ [Krr]{Xr} = [Frp]{Φ},(3.19)

where, [Ktt], [Ktr], [Krt], and [Krr] are the global stiffness matrices, [Ftp] and
[Frp] are the global electro-elastic matrices, {Xt} and {Xr} are the global nodal
generalized displacement vectors, {R} is the global nodal mechanical force vec-
tor, and {Φ} is the global nodal electric potential vector. Over imposing the
displacement boundary conditions, the global rotational degrees of freedom are
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condensed to obtain the global equilibrium equations in terms of the global
translational degrees of freedom only, i.e.:

(3.20) [K]{Xt} = [F ∗tp]{Φ}+ {R}

in which, [K] = [Ktt] − [Ktr][Krr]
−1[Krt] and [F ∗tp] = [Ftp] − [Ktr][Krr]

−1[Frp].
Equation (3.20) represents the electro-elastic finite element model of the func-
tionally graded piezoelectric beam considered in this work.

4. Validation of the developed finite element code

A MATLAB code has been developed for implementation of the FE formu-
lation of the FGPM beam described in the previous section. The accuracy of
the proposed finite element model and its corresponding developed FE code for
functionally graded piezoelectric beams is considered first. In what follows, three
examples have been solved in order to evaluate the accuracy of the developed
FE code by comparing its results with the available theoretical and numerical
results of the literature.

4.1. Cantilever KYNAR piezoelectric beam

As shown in Fig. 2, a cantilever beam consisting of two layers of KYNAR
piezoelectric films is considered. The relevant material properties are given in [25].
The effect of the applied voltage on the tip deflection have been studied and
compared with the results obtained by Koconis et al. [13]. Eight elements were
used for modeling of the beam. Figure 3 shows the comparison between the
predicted results by the developed FE simulation with the available experimental
data given in [13]. It is observed that results obtained by the developed FE
code considering eight elements are in excellent agreement with those of the
experimental data reported by Koconis et al. [13].

Fig. 2. Schematic of a KYNAR cantilever piezoelectric beam.
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Fig. 3. Tip deflection of (piezoelectric KYNAR) cantilever beam as a function of input
voltage.

4.2. Static deformation of a functionally graded beam

For the second verification case, static deformation of a functionally graded
beam with simply supported ends is considered here. FG material of the beam is
composed of Aluminum (Al; Em = 70GPa, νm = 0.3) and Zirconia (ZrO2; Ec =
200GPa, νc = 0.3) and its properties vary according to Eq. (2.1) through the
thickness. The bottom surface of the beam is considered to be pure Zirconia and
the top one is considered to be pure Aluminum. The beam width and thickness
are assumed to be constant with values b = 0.1m and h = 0.1m, respectively.

Fig. 4. A functionally graded simply-supported beam under uniformly distributed load.
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Two different values for the beam length are considered in the FE simulation,
i.e., 0.4m and 1.6m with 8 and 16 beam elements used for beam discretization,
respectively. Distributed loading with the intensity of q is applied at the top
surface as shown in Fig. 4. The lateral deflection of the middle section of the beam
is normalized by dividing it to the maximum lateral deflection of a homogeneous
beam made of Aluminum which is obtained from the analytical relation wstat =
5qL4/384cAl

11I.
Results obtained from the presented FE model are compared with the results

presented by Şimşek [26], and are summarized in Table 1. Good agreement is
observed between the results of the current FE formulation and the Ritz method
results presented by Şimşek [26].

Table 1. Maximum non-dimensional lateral tip deflection of the beam for various values of
volume fraction index.

FGM index

Normalized Lateral Deflection

L/h = 16 L/h = 4

Present model Şimşek [26] Present model Şimşek [26]

λ = 0.0 (Aluminium) 1.14286 1.13002 1.00893 1.00812

λ = 0.2 0.85842 0.85842 0.75614 0.75595

λ = 0.5 0.72268 0.71482 0.63995 0.63953

λ = 1.0 0.63602 062936 0.56657 0.56615

λ = 2.0 0.56739 0.56165 0.50754 0.50718

λ = 5.0 0.49680 0.49176 0.44423 0.44391

100% Ceramic 0.40007 0.39550 0.35319 0.35284

4.3. Static deformation of a cantilever bimorph beam

As the last set of verification cases, the free end displacement of a cantilever
bimorph piezoelectric beam with L/h = 6 and subjected to a uniform distributed
load of q = 10 kN/m2 and an applied voltage of V = 100V is investigated in
Table 2. Analytic results from Yang and Xiang [7] are presented in this table
for comparison. Ten elements are used for beam discretization. The bimorph
actuator has two layers of piezoelectric material with opposite polarizations with
the following material properties:

C11 = 60.6 GPa, C55 = 23 GPa,

d31 = −274× 10−12 C/N, d15 = 741× 10−12 C/N.

Excellent agreement is observed between the results of current formulation
and the analytical results of [7].
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Table 2. Free end deflection of a bimorph cantilever beam subjected to electro-mechanical
loads.

Load
Free end deflection [m]

Present model Yang and Xiang [7]
q = 10 kN/m2 3.286× 10−4 3.286× 10−4

V=100 V 14.796× 10−7 14.796× 10−7

5. Shape control algorithm

The Buildup Voltage Distribution (BVD) algorithm is employed here for
the purpose of the shape control of the FGPM beam. The top surface of the
beam structure is discretized into a number of regions and the bottom surface
is assumed to be grounded. Each region is constructed of at least one element
and each element must be fully covered by only one region. In each region, the
magnitude of the voltage applied for the shape control is constant. The primary
objective of shape control analysis is to find the magnitude of the applied voltage
in each region in order to deform the beam to a predefined and desired shape.
Generally, the desired shape of the structure is known prior to the analysis either
through a specified mathematical function or by a prescribed displacement field
to the beam nodes. The general process of the shape control using the BVD
algorithm as proposed by Chee et al. [19] is explained in this section through
a step-by-step procedure.

The relation between the transverse nodal displacement {w0} vector [Nn×1]
and the voltage distribution {ϕp} vector [Np × 1] is given by:

(5.1) {w0} = [S]{ϕp} =

Np∑
k=1

{Sk}ϕpk = {S1}ϕp1 + {S2}ϕp2 + · · ·+ {SNp}ϕ
p
Np
,

where Nn is the total number of nodes, Np is the total number of regions, [S] is
the influence coefficient (IC) matrix, and {Sk} is the IC column vector. The
linearity between the displacements and voltages, as a result of the linear consti-
tutive equation employed here, allows expressing {w0} as a linear combination
of {ϕp}. Each {Sk} vector can be obtained as the displacement vector {w0}
assuming that all of the voltages are zero except ϕpk = 1.

Suppose that the corresponding transverse nodal displacement of the desired
shape of the beam is denoted by {wd}. An initial voltage distribution vector
{ϕp}0 is applied to the regions and the corresponding nodal displacements vector
{w(j=0)} are calculated using Eq. (5.1). Three types of initial voltage distribution
may be applied. (1) All region voltages are set to zero initially. (2) A random
set of voltages is applied. (3) A user defined set of voltages is applied initially.
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An incremental voltage value denoted by dV is also selected. The incremental
voltage dV should be set to the same order of magnitude to the initial voltage
distribution.

The “Lshape” variable, which is the sum of all the squared differences of the
transverse displacements between the desired and the actual (calculated) shape
at all nodes, is defined as the objective function for the BVD algorithm. This
variable is calculated during the jth iteration (j = 1, 2, . . .) of the algorithm as:

(5.2) 0 < Lshape =

Nn∑
i=1

(w∗di − w∗(j)i)
2 < 4Nn,

where wi is the transverse displacement at the ith node and superscript ∗ denotes
quantities normalized by their corresponding maximum values. During each iter-
ation, a selected number of the total active regions are chosen and their voltages
are increased by a certain amount of dV . Selection of these regions is based on
the γ value given by:

(5.3) 0 < γ
(m±)
(j) =

1

4

Nn∑
i=1

cij(w
∗
di − w

∗(m±)
(j)i )

2
< Nn,

where

cij =

[ (w∗di − w∗(j−1)i)
Max∀i{|(w∗di − w∗(j−1)i)|}

]2
.

{w(m±)
(j) } is the vector of nodal transverse displacements calculated in the jth

iteration by adding (or subtracting) dV to the |m|th row of the voltage distri-
bution vector of the previous iteration. Starting the iteration from j = 1, the
following quantities are calculated:

γ
(m+)
(j) . . . for m+ = 1, 2, . . . , Np,

γ
(m−)
(j) . . . for m− = −1,−2, . . . ,−Np,

where
γ
(m±)
(j) = f({w(j)

m±}) = f({w({ϕp
(m±)
}(j))})

and
{ϕp

(m±)
}(j) = {ϕp}(j−1) ± dV · {ϕp}Im,

where {ϕp}Im is a zero vector except for the |m±|th row in which it is equal 1.
A selection rate value, SR, in the range of 0 to 0.5 is assumed. The selection rate,
SR, is a parameter that determines the number of regions, Ns, to be selected
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among 2Np cases that were tested in this step, i.e., Ns = Integer(SR×2Np). The
selected number of regions with the lowest γ(j) values will have dV permanently
added (or subtracted) on the existing voltage vector of the previous iteration.

The procedure of computing γ(j) values, selection of regions, and modifying
the voltages based on the new configuration of voltages is repeated for a fixed
number of iterations or until the solution is converged to the desired shape (i.e.,
Lshape becomes less than a predefined value tol). The step-by-step implementa-
tion of the algorithm is as follows:

1. A desired shape for the beam is given wd.
2. Divide the beam surface into Np regions.
3. Calculate the influence coefficient (IC) matrix [S] using the developed FE

code by applying an input voltage of unit magnitude to each region and
obtaining the corresponding lateral displacements of the beam nodes.

4. Select values for the selection rate (0 < SR < 0.5), the initial voltage
vector ϕ0 and the incremental voltage (dV ).

5. From Eq. (5.1) calculate the corresponding initial deformation of the beam
w(0).

6. Set j = 1.
7. Store current voltage distribution in the vector ϕ.
8. From Eq. (5.2) calculate Lshape using normalized values of w(0) and wd.
9. While Lshape > tol do the following:

(a) Calculate cij using the normalized values of wd and {w(j−1)}.
(b) For i = 1: Np do:

i. m+ = i.

ii. Add dV to the ith row of {ϕ}and store it in {ϕ+}, i.e., {ϕ+} =
{ϕ}+ dVi.

iii. Calculate {wm+

(j) } = [C]{ϕ+}.

iv. Calculate γ(m
+)

(j) using Eq. (5.3) and the normalized values of wd
and {wm+

(j) }.
(c) For i = 1 : Np do:

i. m− = −i.
ii. Subtract dV from the ith row of ϕ and store it in ϕ−, i.e., {ϕ−} =
{ϕ} − dVi.

iii. Calculate {wm−

(j) } = [C]{ϕ−}.

iv. Calculate γ(m
−)

(j) using Eq. (5.3) and the normalized values of wd
and {wm−

(j) }.
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(d) From the 2Np cases of γ(j) calculated in steps b and c select Ns =
Integer(SR× 2Np) cases with the lowest γ(j) values and permanently
add (or subtract) dV to the corresponding region and update the {ϕ}
vector.

(e) Calculate {w(j)} = [C]{ϕ}.
(f) Set j = j + 1.
(g) Calculate Lshape using Eq. (5.2).

10. End.

It must be noted that if a region is selected twice, which represents a positive and
a negative electric field, the one with the greater γ value is discarded. Moreover,
if the iteration becomes trapped into two alternating voltage distributions, then
dV will be halved. Selection of dV and SR essentially affects on the number of
iterations required to achieve converged solution. In order to reach the desired
shape in a smaller number of iterations and with more accuracy it is possible to
apply the algorithm in a specified number of iterations with an arbitrary selected
SR, dV , and starting voltages values. The results of this pre-run, may be used
as the starting applied voltage in the main execution of the algorithm.

5.1. Numerical results of shape control

This section illustrates results obtained for the shape control of a cantilever
FGPM beam. PZT-4 and PZT-5H are selected as the material models of the
FGPM material. It is assumed that the top surface of the beam is 100% PZT-4
and the bottom surface is 100% PZT-5H. The material properties for PZT-4 and
PZT-5H are given in Table 3 which are taken from [7]. The beam has a length
of 200mm and a uniform rectangular cross section with a width of 20mm and
a thickness of 5mm. The beam is clamped at the left end as shown in Fig. 5. In
this figure the numbers indicate the equipotential regions used for shape control
implementation. Such equipotential surfaces have been discussed and used earlier
for modeling equipotential surfaces in [27, 28]. The BVD algorithm is employed
to control the shape of the beam for the following two cases. In the first case, the
beam is subjected to a mechanical load and the shape control algorithm must
return the beam to its undeformed configuration. In the second case, a desired
mathematical shape is given and the control algorithm must deform the structure
in a way that it closely matches the predefined desired shape. The top surface
of the beam is divided into ten regions and the beam is divided evenly into 40
elements along the x direction. Each region consists of four elements and the
magnitude of the applied voltage is constant through each region.

Firstly, it is assumed that the beam is subjected to a distributed downward
load of 10N/m2. The objective is to find the distribution of the applied voltage
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Table 3. Material properties of PZT-4 and PZT-5H [7].

Property PZT-4 PZT-5H
C11 [GPa] 139 126
C55 [GPa] 25.6 23.0
e31 [C/m2] −5.2 −6.5
e15 [C/m2] 12.7 17.0

Fig. 5. Schematic top view of cantilevered functionally graded piezoelectric beam with
descritized regions.

across the ten regions such that the deflection of the structure under the influence
of the load is suppressed to zero. The deformation of the structure under the
applied load for λ = 1.0 and the normalized shape of the beam when the shape
control algorithm is employed are shown in Fig. 6 for different iteration numbers.

Fig. 6. Desired shape and transverse deflection of the centerline of the beam using BVD
shape control algorithm with different number of iterations.
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The initial voltage distribution is taken to be 10 volts on all regions and the SR
value is considered to be 0.3. A magnitude of 5 volts is used for the incremental
voltage increase, dV .

As shown in Fig. 6, over increasing the number of iterations for calculating
the required voltage, the normalized transverse displacement of the beam tends
to zero. Values of the mean square errors of the obtained beam shapes with
the desired shape after various iterations are summarized in Table 4. It can be
seen that the mean square error rapidly decreases by increasing the number of
iterations.

Table 4. Mean square errors of the obtained beam shapes with the desired shape for
different iteration numbers.

Number of iterations Mean square error (×10−17) [m2]
1 895.1620
5 496.0748
10 391.4066
50 8.6242
100 3.8692

The effect of volume fraction index on the required voltages for the shape
control of the FGPM beam is summarized in Table 5. From this table, it is ob-
served that the magnitudes of the required voltages first decrease by increasing
the volume fraction index up to the value of λ = 1.0, and then increase over fur-
ther increase of the index value. This is because the induced flexural deflection
of the beam under the applied electrical load is related to the variation of the
piezoelectric coefficient, e31, across the beam thickness. If there were no variation
of this coefficient across the beam thickness, there would be no transverse deflec-
tion through the beam length (this corresponds to a purely PZT-4 or PZT-5H
beam).

Table 5. Variation of the voltage distribution with the volume fraction index for
a cantilever FGPM beam.

Volume fraction index
Region voltages [V]

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

λ = 0.2 592.4 230.3 271.1 375.1 111.4 74.3 46.4 −22.3 104.0 37.1
λ = 0.5 338.8 131.7 155.1 214.5 63.7 42.5 26.5 −12.7 59.5 21.24
λ = 1.0 268.5 104.4 122.9 170.0 50.5 33.7 21.0 −10.1 47.1 16.8
λ = 2.0 264.0 102.7 120.9 167.2 49.7 33.1 20.7 −9.9 46.4 16.6
λ = 5.0 363.6 141.3 166.4 230.2 68.4 45.6 28.5 −13.7 63.8 22.8
λ = 10 566.7 220.3 259.4 358.9 106.6 71.1 44.4 −21.3 99.5 35.5
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Increasing the value of λ from 0.2 to 1.0 makes the beam more inhomogeneous
and as a result the magnitude of the required voltage decreases. Further increase
of the volume fraction index results in more homogeneity of the beam by PZT-4
material and thus less variation of e31 through the thickness which results in the
increase of the required voltage for the transverse deflection of the beam.

As the second case, the effect of the number of regions on the shape control
of the FGPM beam is investigated. The desired shape of the beam is shown in
Fig. 7 and is predefined by the mathematical relation

wd =
cos
(
2πx
L

)
− 1

107
.

No mechanical load is applied to the beam in this case. The upper surface of
the beam is divided into 2, 4, 8, and 10 regions and a value of 0.3 is assigned
to SR. Also, a magnitude of 10 volts is considered for the incremental voltage
increase, dV . The initial voltage distribution of regions for each case is given in
Table 6.

Fig. 7. Desired shape and transverse deflection of the centerline of the beam using BVD
shape control algorithm with different number of regions.

Results obtained for the shape control of the beam with different number of
regions are shown in Fig. 7 for the case of λ = 1.0 and an overall number of 100
iterations. Magnitudes of required voltages of regions are summarized in Table 7.
It is obvious that over increasing the number of regions from two to four, the
accuracy of the algorithm improves, remarkably. However, such improvement
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Table 6. Initial voltage distribution for different number of regions.

Number of regions
Initial voltage distribution [V]

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

2 −50 50 – – – – – – – –
4 −50 −40 40 50 – – – – – –
8 −50 −40 0 60 60 0 −40 −50 – –
10 −50 −40 0 60 50 50 60 0 −40 −50

Table 7. Variation of voltage distribution for different number of regions of the FGPM
beam.

Number
of regions

Region voltages [V]
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

2 −70.6 30.6 – – – – – – – –
4 −157.7 −189.5 89.9 −174.3 – – – – – –
8 −117.9 −114.1 30.9 213.7 172.9 22.6 −111.6 −161.5 – –
10 −147.6 −119.2 −20.6 147.9 135.2 137.5 143.2 −25.6 −125.2 −155.5

is relatively small for further increase of the regions to more than four. Since
there are two inflection points in the desired shape of the structure, i.e., three
changes in the beam curvature, at least three regions must be considered in
order to apply the external voltage and achieve the desired shape. Furthermore,
symmetry of the required voltages is obvious for the case of Np = 10. Values of
the mean square errors of the obtained beam shapes with the desired shape for
different number of regions after 100 iterations are summarized in Table 8. It can
be observed that the mean square error decreases as the number of regions are
raised. Best results are obtained when 10 regions are employed for the purpose
of shape control.

Note that as may be observed from the presented results, large actuation
voltages have been applied to control the shape of FGPM beams. It is to be
noted that at large applied potentials, the behavior of the piezoelectric ma-
terials is nonlinear (piezoelectric coupling coefficients are functions of applied

Table 8. Mean square errors of the obtained beam shapes with the desired shape for
different number of regions.

Number of regions (Np) Mean square error (×10−17) [m2]
2 1065.3460

4 16.8170

8 9.3421

10 0.5386
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voltages) [29, 30]. However, the main focus of the current study is on the demon-
stration of the integrated FE+BVD formulation for shape control of FGPM
beams. These structures have practical use in smart micro-electro-mechanical
devices in which the values of applied loads and corresponding displacements
are small and thus the assumptions of linearity of the behavior of the material
used here are justified.

6. Conclusions

In this work, finite element modeling of FGPM beams and their correspond-
ing shape control using the Buildup Voltage Distribution algorithm were consid-
ered. The developed finite element code was validated with the available analyt-
ical and/or experimental data and the its corresponding accuracy was verified.
The developed finite element model is capable of considering variation of both
the mechanical and electrical properties and can be used to model homogeneous
as well as inhomogeneous beams made of isotropic and/or anisotropic material
properties. Effect of shear deformation was also considered and consequently
shearing and bending stiffness matrices were formed and calculated separately
using the selective integration technique. In order to control the FGPM beam
shape to achieve a desired shape, the BVD shape control algorithm was em-
ployed in the developed FE code. The FE code with the BVD algorithm im-
plemented in it was used to calculate the required applied voltage distribution
for FGPM beams which yields a predefined desired shape for the corresponding
beams.

Numerical simulations were carried out for the shape control of monomorph
FGPM beams. The effect of volume fraction index and the number of regions were
studied on the required voltage and it was demonstrated that volume fraction
index has non-intermediate effect on the voltage distribution which leads to
lower control voltage for intermediate values of volume fraction indices. It was
also shown that for a predefined desired shape, the minimum required number of
regions to be considered to achieve an acceptable and accurate shape equals to
the number of the curvature changes in the prescribed desired shape. Increasing
the number of regions beyond this value showed negligible effect on attaining the
prescribed desired shape of the structure and only improved numerical accuracy.
The effect of number of iterations on the precision of the algorithm was also
evaluated. Furthermore, using the functionally graded piezoelectric materials
the possibility of self-shape-controlling of the structure by applying appropriate
voltage distribution and without bonding or embedding piezoelectric patches was
demonstrated in this work.

Theoretically it is possible to achieve any desired shape (compatible with
the boundary conditions and physical constraints of the beam) with increasing
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the number of elements and corresponding active zones of the structure. How-
ever, there are certain limitations from the practical point of view that prevents
achieving such flexibility in real applications. These limitations include but not
limited to challenges in applying the voltages, nonlinear behavior of piezoelectric
materials, breaking the assumptions used here in approximating mechanical and
electrical behavior of the structure.

The present work can be well extended to modeling and static or dynamic
analysis of FGPM plates and shells and their corresponding shape control or
vibration control.

Appendix. Elemental matrices

Vectors of stress, electrical displacement, and electric field and elasticity ma-
trices, piezoelectric coefficient matrices, dielectric permittivity coefficient matrix
of PZT materials are expressed as follows:

(A.1)

{σb} = σx, {σs} = σxz,

{Di} = Dx, {Do} = Dz,

{Ei} = Ex, {Eo} = Ez,

[Cb] = C11, [Cs] = C55,

[eb] = e31, [es] = e15,

[ηi] = η11, [ηo] = η33.

Elemental stiffness, electro-elastic coupling, and dielectric stiffness matrices, and
the elemental load vector in Eq. (3.15) are given as:

[Ke
tt] = [Ke

ttb] + [Ke
tts], [Ke

tr] = [Ke
trb] + [Ke

trs],(A.2)

[Ke
rr] = [Ke

rrb] + [Ke
rrs], [Ke

rt] = [Ke
tr]
T ,(A.3)

[Ke
ttb] = be

le∫
0

[Btb]
T [Dtb][Btb] dx, [Ke

tts] = be

le∫
0

[Bts]
T [Dts][Bts] dx(A.4)

[Ke
trb] = be

le∫
0

[Btb]
T [Dtrb][Brb] dx, [Ke

trs] = be

le∫
0

[Bts]
T [Dtrs][Brs] dx,(A.5)

[Ke
rrb] = be

le∫
0

[Brb]
T [Drrb][Brb] dx, [Ke

rrs] = be

le∫
0

[Brs]
T [Drrs][Brs] dx,(A.6)

[F etp] = [F etpb] + [F etps], [F erp] = [F erpb] + [F erps],(A.7)
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[F ept] = [F etp]
T , [F epr] = [F erp]

T ,(A.8)

[F etpb] = be

le∫
0

[Btb]
T [Dtpb][B

o
p] dx, [F etps] = be

le∫
0

[Bts]
T [Dtps][B

i
p] dx,(A.9)

[F erpb] = be

le∫
0

[Brb]
T [Drpb][B

o
p] dx, [F erps] = be

le∫
0

[Brs]
T [Drps][B

i
p] dx,(A.10)

[Ke
D] = [Ke

Di] + [Ke
Do],(A.11)

[Ke
Di] = be

le∫
0

[Bi
p]
T [DDi][B

i
p] dx, [Ke

Do] = be

∫ le

0
[Bo

p]
T [DDo][B

o
p] dx,(A.12)

{Re} = be

le∫
0

[Nt]
T {fs} dx+ {fc},(A.13)

where le and bedenote the length and the width of the element. The rigidity
terms are:

[Dtb] =

h/2∫
−h/2

[Cb] dz, [Dts] =

h/2∫
−h/2

[Cs] dz,(A.17)

[Dtrb] =

h/2∫
−h/2

z[Cb] dz, [Dtrs] = [Dts],(A.18)

[Drrb] =

h/2∫
−h/2

z2[Cb] dz, [Drrs] = [Dts],(A.19)

[Dtpb] =

h/2∫
−h/2

[eb][Z
o
p ] dz, [Dtps] =

h/2∫
−h/2

[es][Z
i
p] dz,(A.20)

[Drpb] =

h/2∫
−h/2

z[eb][Z
o
p ] dz, [Drps] = [Dtps],(A.21)

[DDo] =

h/2∫
−h/2

[Zop ]T [ηo][Z
o
p ] dz, [DDi] =

h/2∫
−h/2

[Zip]
T [ηi][Z

i
p] dz.(A.22)
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