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Th e goal of this paper is to present a brief survey of our research that has focused on studying the dynamics of dissipative partial 

diff erential equations by performing computer as sisted proofs. We provide a description of the main ideas behind the computer 

assisted proofs that we have performed, along with related topics. Th e emphasis is given to the case of the vis cous Burgers equation 

with constant forcing, for which the existence of globally attracting fixed points has been established. To achieve this goal, we 

used a combination of analytical results with computer assistance. 
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Introduction 

Th e goal of this paper is to present a brief survey of our 

PhD dissertation that will include a report from a study 

of the dynamics of dissipative partial diff erential 

equations (dPDEs) by performing computer assisted 

proofs. We call a  dPDE a  partial diff erential equation 

(PDE) of the following type 

Th e class of dPDE includes many of the most relevant 

PDEs, which have been intensively studied by both physi-

cists and mathematicians, for instance, the viscous Burgers 

equation, the Ginzburg-Landau equation, the Kuramoto-

-Shivasinsky equation and the Navier-Stokes equations. 

Computer techniques for dPDEs 

While the topic of computer assisted proofs in ordinary 

diff erential equations (ODEs) seems to be thoroughly 

analyzed and established, the topic of computer assisted 

proofs in partial diff erential equations is at the infancy 

stage. Now, let us give a  brief summary of results 

that exist in literature. Th ere exists a method of proving 

the existence and stability of steady-states for nonlinear 

PDEs [1, 2], which has been successfully applied to 

the  two dimensional Navier-Stokes equations, among 

other equations. Th is method concerns only the 

stationary problem. To our knowledge, there exist only 

two methods that concern the nonstationary (evolution 

in time) problem for PDEs: the method proposed by 

G.  Arioli and H. Koch in [3] and the method of 

self-consistent bounds, proposed by P. Zgliczyński, 

see  e.g. [4] and [5]. Both methods have been applied 

to  the Kuramoto-Shivasinsky equation on the real 

line  with periodic boundary condi tions. Our 

approach  is  based on the method of self-consistent 

bounds. 

du
dt
= Lu + N(u,Du, . . . ,Dru). (1)

u : Rn× [0,T ] → R
n, x ∈ T

d d-dimensional torus, L
is a linear operator, N is a polynomial, Ds- a collec-
tion of partial derivatives of the order s. Moreover,
L is diagonal in the Fourier basis {eikx}k∈Zd

Leikx = λkeikx, the eigenvalues satisfy

λk = −ν(|k|)|k|p, 0 < ν0 ≤ ν(|k|) ≤ ν1, p > r.
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The viscous Burgers equation 
with constant forcing 

As the viscous Burgers equation we consider the following 

PDE 

In the Fourier domain, (2) takes the following form 

where u0 is a sufficiently regular initial condition and f 

is a  constant forcing function. In the actual algorithm 

we require f to be defined by a finite number of modes. 

We associate ak with the coefficient corresponding to the 

Fourier basis function eikx. We proved the existence of 

steady-states of (2) by proving the existence of fixed 

points of (3). For a  class of sufficiently regular initial 

conditions both approaches are equivalent. 

Th e expression u0  C4 means that the fourth 

derivative of u0 exists and is continuous. For the proof 

and the motivation of this result we refer the reader to 

[6]. 

Definition 2 For any given number m > 0 the m-th 

Galerkin projection of (3a) is 

For the purpose of providing a rough explanation of the 

computer assisted proof in the following section we 

define two kinds of sets that we used. 

The main theorem. A computer assisted 
proof 

Below, we present an examplary theorem that we proved 

using computer assistance, along with a  sketch of the 

proof. 

For the proof and a  detailed description of the 

algorithm we refer the reader to [6]. Th e computer 

∂u
∂t
+ u · ∂u

∂x
− ν � u = 0 in Ω, t > 0,

where ν is a positive viscosity constant. The equation
was proposed by Burgers (1948) as a mathematical
model of turbulence. Later on it was successfully
shown that the Burgers equation models certain gas
dynamics (Lighthill (1956)) and acoustic (Blackstock
(1966)) phenomena. For our purposes we define this
equation on the real line Ω := R, add a constant forc-
ing f to the right-hand side and consider the initial
value problem with periodic boundary conditions

u : R × [0,T ) → R,

f : R→ R,

ut + u · ux − νuxx = f (x), (2a)
u(x, 0) = u0(x), x ∈ R, (2b)
u(x, t) = u(x + 2kπ, t), x ∈ R, t ∈ [0,T ), k ∈ Z, (2c)
f (x) = f (x + 2kπ), x ∈ R, k ∈ Z. (2d)

dak

dt
= −i

k
2

∑
k1∈Z

ak1 · ak−k1 − νk2ak + fk, k ∈ Z, (3a)

ak(0) =
1

2π

∫ 2π

0
u0(x)e−ikx dx, k ∈ Z, (3b)

fk =
1

2π

∫ 2π

0
f (x)e−ikx dx, k ∈ Z, (3c)

Lemma 1 Let u0 ∈ C4 be an initial condition for (2),
and {ak(0)}k∈Z the Fourier coefficients of u0. It is
equivalent to solve either (2) with u0 as the initial
condition or (3) with {ak(0)}k∈Z as the initial condi-
tion. Meaning that {ak(t)}k∈Z are the Fourier coeffi-
cients of u(t) for all t ≥ 0.

Let H be a Hilbert space, actually L2 or one of its
subspaces in the context of dPDEs. We assume that
there is a sequence of subspaces Hk ⊂ H such that
dim Hk = d1 < ∞, Hk and Hk′ are mutually orthogonal
for k � k′ and H = ⊕k∈I Hk. For n > 0 we set Xn =

⊕|k|≤n,k∈I Hk. By Pn : H → Xn we denote a projection
onto Xn.

dak

dt
= −i

k
2

∑
|k−k1 |≤m
|k1 |≤m

ak1 · ak−k1 − νk2ak + fk, |k| ≤ m. (4)

Let l > 0, by ϕl(t, x) we denote the solution of the l-th
Galerkin projection of (3a) at a time t > 0 with an
initial value x ∈ Pl(H). The solution ϕl(t, x) is well de-
fined, because solutions for each Galerkin projection
of (3a) at any time t > 0 exist and are unique due
to the fact that (4) is a finite system of ODEs with
a locally Lipschitz right-hand side. For the purpose
of providing a rough explanation of the computer as-
sisted proof in the following section we define two
kinds of sets that we used.

Definition 3 Let R ⊂ H, R is convex, l > 0, x ∈ Xl,
ϕl(t, x) be the local flow inducted by (4). We call Pl(R)
a trapping region for the l-th Galerkin projection (4)
if ϕl(t, Pl(R)) ⊂ Pl(R) for all t > 0 or equivalently the
vector field on the boundary of Pl(R) is pointing in-
wards.

Definition 4 Let M1 > 0. The set A ⊂ H is called the
absorbing set for any Galerkin projection of (3a), if
for any initial condition {ak}k∈Z ∈ H there exists a
finite time t1 ≥ 0, such that ϕl (t, Pl({ak}k∈Z)) ∈ Pl(A)
for all l > M1 and t ≥ t1.

Theorem 5 Let ν = 2. For
any f ∈ 1.8 (sin 2x − cos 3x) +∑3

k=1 [−0.025, 0.025] (sin kx + cos kx) there exists
a fixed point - a steady state solution of (2), which
is unique and globally attracting any initial data u0

satisfying u0 ∈ C4 and
∫ 2π

0 u0(x) dx = 2π.
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software package is available along with all the data from 

the proofs [7]. For the purpose of the paper we present 

only the main ideas in a sketch of the proof. 

All the calculations performed during the execution 

of the algorithm are rigorous and the rounding errors are 

handled by the interval arithmetic. Some elements were 

realized by using the CAPD library [8], which we 

recommend for this kind of application. 

Some figures 

To present the results in an intuitive way we provide 

some figures describing the behavior of solutions. 

To establish the existence of a locally attracting
fixed point for (3) we used a computer technique
presented in [5], originally applied to the Kuramoto-
Sivashinsky equation. The technique, based on the
method of self-consistent bounds, comprises several
steps. The first step is to find x, a candidate for
a fixed point of (3) by the Newton method itera-
tions applied to the m-th Galerkin projection of (3a),
with m > 0. Secondly, new coordinates in which the
Jacobian of (4) at x has almost diagonal form, are
found. Thirdly, W ⊂ H, an isolating box, such that
Pl(W) is a trapping region for each l-th Galerkin pro-
jection of (3a), is constructed. At this point, we
have proved the existence of a fixed point for each
Galerkin projection of (3a). Then we pass to the
limit with Galerkin projections by estimating the log-
arithmic norm on W ⊂ H. Furthermore, if we man-
age to find an upper bound for the logarithmic norm
which is negative (logarithmic norm is not a norm
in the classical sense, but rather should be thought
of as a directional derivative and, thus, can have a

, ,
negative value), we claim that the found fixed point
is, in fact, attracting in W ⊂ H.

To extend the property of attractiveness of the
obtained fixed point from local to global we construct
A ⊂ H - an absorbing set, capturing after a finite
time any sufficiently regular solution of any Galerkin
projection of (3a). Then, in order to rigorously in-
tegrate Pl(A) for all l > m we simultaneously use the
algorithm from [4] for solving a differential inclusion.
If we manage to verify that there exists a t1 > 0 such
that ϕl(t, A) ⊂ W for all t > t1 and for all l > m, hav-
ing in mind that A and W are expressed in different
coordinates, we claim that the fixed point within W
attracts any sufficiently regular initial condition.
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Th e upper-left and upper-right figures show projections 

onto a  two-dimensional plane of the solutions of the 

stationary viscous Burgers equation with a  sinusoidal 

forcing 

which is a system of three non-autonomous ODEs. On 

the upper-left corner figure we present the periodic 

solution separately, whereas on the upper-right corner 

figure the periodic solution is marked with the black 

color and is plotted along with some nearby non-periodic 

solutions. 

uxx = u · ux − f (x),

The bottom-left figure shows an example of the
forcing function f (x) for which we have managed
to prove the existence of a globally attracting fixed
point. Other parameter values were as follows: ν =
0.5,

∫ 2π
0 u0(x) dx = 0.05π. The approximate fixed

point, showed on the bottom-right corner figure, was
obtained using a non-rigorous integration of the 10-
th Galerkin projection of (3a), which was terminated
at t = 2π. This is provided in order to highlight that
the fixed point is not necessarily similar to the forc-
ing function.
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