PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Accurate gradient computations at interfaces using finite element methods

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
New finite element methods are proposed for elliptic interface problems in one and two dimensions. The main motivation is to get not only an accurate solution, but also an accurate first order derivative at the interface (from each side). The key in 1D is to use the idea of Wheeler (1974). For 2D interface problems, the point is to introduce a small tube near the interface and propose the gradient as part of unknowns, which is similar to a mixed finite element method, but only at the interface. Thus the computational cost is just slightly higher than in the standard finite element method. We present a rigorous one dimensional analysis, which shows a second order convergence order for both the solution and the gradient in 1D. For two dimensional problems, we present numerical results and observe second order convergence for the solution, and super-convergence for the gradient at the interface.
Rocznik
Strony
527--537
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • School of Science, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, 210023 China
autor
  • Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
autor
  • College of Resource and Environment, Wuhan University of Technology, Wuhan, 430070 China; China Institute of Water Resource and Hydropower Research (IWHR), Beijing, 100038 China
autor
  • Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
Bibliografia
  • [1] Adams, R. and Fournier, J. (2003). Sobolev Spaces. Second Edition, Academic Press, Cambridge, MA.
  • [2] An, N. and Chen, H. (2014). A partially penalty immersed interface finite element method for anisotropic elliptic interface problems, Numerical Methods for Partial Differential Equations 30(6): 1984–2028.
  • [3] Anitescu, C. (2017). Open source 3D Matlab isogeometric analysis code, https://sourceforge.net/u/cmechanicsos/profile/.
  • [4] Babuška, I. (1970). The finite element method for elliptic equations with discontinuous coefficients, Computing 5(3): 207–213.
  • [5] Bramble, J. and King, J. (1996). A finite element method for interface problems in domains with smooth boundaries and interfaces, Advances in Computational Mathematics 6(1): 109–138.
  • [6] Brenner, S. and Scott, R. (2007). The Mathematical Theory of Finite Element Methods, Springer, New York, NY.
  • [7] Cao, W., Zhang, X. and Zhang, Z. (2017). Superconvergence of immersed finite element methods for interface problems, Advances in Computational Mathematics 43(4): 795–821.
  • [8] Carstensen, C., Gallistl, D., Hellwing, F. andWeggler, L. (2014). Low-order DPG-FEM for an elliptic PDE, Computers & Mathematics with Applications 68(11): 1503–1512.
  • [9] Chen, Z. and Zou, J. (1998). Finite element methods and their convergence for elliptic and parabolic interface problems, Numerische Mathematik 79(2): 175–202.
  • [10] Chou, S. (2012). An immersed linear finite element method with interface flux capturing recovery, Discrete and Continuous Dynamical Systems B 17(7): 2343–2357.
  • [11] Chou, S.H., Kwak, D.Y. and Wee, K. (2010). Optimal convergence analysis of an immersed interface finite element method, Advances in Computational Mathematics 33(2): 149–168.
  • [12] Douglas Jr, J., Dupont, T. and Wheeler, M. (1974). A Galerkin procedure for approximating the flux on the boundary for elliptic and parabolic boundary value problems, Revue française d’automatique, informatique, recherche op´erationnelle. Analyse numérique 8(2): 47–59.
  • [13] Guo, H. and Yang, X. (2017). Gradient recovery for elliptic interface problem. II: Immersed finite element methods, Journal of Computational Physics 338: 606–619.
  • [14] He, X., Lin, T. and Lin, Y. (2011). Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions, International Journal of Numerical Analysis and Modeling 8(2): 284–301.
  • [15] Ji, H., Chen, J. and Li, Z. (2016). A new augmented immersed finite element method without using SVD interpolations, Numerical Algorithms 71(2): 395–416.
  • [16] Karczewska, A., Rozmej P., Szczeciński, M. and Boguniewicz, B. (2016). A finite element method for extended KdV equations, International Journal of Applied Mathematics and Computer Science 26(3): 555–567, DOI: 10.1515/amcs-2016-0039.
  • [17] Kevorkian, J. (1990). Partial Differential Equations: Analytical Solution, Springer, New York, NY.
  • [18] Kwak, D.Y., Wee, K. and Chang, K. (2010). An analysis of a broken p1 nonconforming finite element method for interface problems, SIAM Journal on Numerical Analysis 48(6): 2117–2134.
  • [19] Li, Z. (1998). The immersed interface method using a finite element formulation, Applied Numerical Mathematics 27(3): 253–267.
  • [20] Li, Z. and Ito, K. (2006). The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains, SIAM, Philadelphia, PA.
  • [21] Li, Z., Lin, T. and Wu, X. (2003). New Cartesian grid methods for interface problems using the finite element formulation, Numerische Mathematik 96(1): 61–98.
  • [22] Lin, T., Lin, Y. and Zhang, X. (2015). Partially penalized immersed finite element methods for elliptic interface problems, SIAM Journal on Numerical Analysis 53(2): 1121–1144.
  • [23] Lin, T. and Zhang, X. (2012). Linear and bilinear immersed finite elements for planar elasticity interface problems, Journal of Computational and Applied Mathematics 236(18): 4681–4699.
  • [24] Sutton, A. and Balluffi, R. (1995). Interfaces in Crystalline Materials, Clarendon Press, Oxford.
  • [25] Tartar, L. (2007). An Introduction to Sobolev Spaces and Interpolation Spaces, Springer, New York, NY.
  • [26] Wahlbin, L. (1995). Superconvergence in Galerkin Finite Element Methods, Springer, New York, NY.
  • [27] Wheeler, M. (1974). A Galerkin procedure for estimating the flux for two-point boundary value problems, SIAM Journal on Numerical Analysis 11(4): 764–768.
  • [28] Xu, J. (1982). Error estimates of the finite element method for the 2nd order elliptic equations with discontinuous coefficients, Journal of Xiangtan University 1(1): 1–5.
  • [29] Yang, X., Li, B. and Li, Z. (2002). The immersed interface method for elasticity problems with interfaces, Dynamics of Continuous, Discrete and Impulsive Systems 10(5): 783–808.
  • [30] Zhang, Z. and Naga, A. (2005). A new finite element gradient recovery method: Superconvergence property, SIAM Journal on Scientific Computing 26(4): 1192–1213.
  • [31] Zienkiewicz, O. and Taylor, R. (2000). The Finite Element Method: Solid Mechanics, Butterworth-Heinemann, Oxford.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97925cd8-e446-414b-b6c6-4ca422ddd3a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.