Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
An experimental study was performed to assess the influences of aluminum content on the porosity, microstructure and mechanical properties of powder metallurgy steels. Optical microscope equipped with the image processing software and the scanning electron microscope were employed to study the microstructure of investigated specimens. In order to find mechanical properties of specimens, Vickers hardness and compression tests were conducted. By increasing the aluminum content (from 0 to 4 wt. %), the porosity increases (from 6.01% to 8.43%). The microstructure of specimens contains aluminum phase distributed between the boundaries of agglomerated iron particles, ferrite, and pearlite. By increasing the aluminum content, stress-strain curves shift significantly downwards, and the modulus of elasticity, elongation, yield stress, and Vickers hardness reduce from 1.82 to 0.86 GPa, 32.1 to 17.8%, 138.1 to 28.2 MPa, and 127.7 to 26.8 HV, respectively.
Wydawca
Czasopismo
Rocznik
Tom
Strony
105--111
Opis fizyczny
Bibliogr. 52 poz., fot., rys., tab.
Twórcy
autor
- Quchan University of Technology, Faculty of Engineering, Department of Industrial Engineering, Quchan, Iran
autor
- Quchan University of Technology, Faculty of Engineering, Department of Industrial Engineering, Quchan, Iran
- Quchan University of Technology, Engineering Faculty, Department of Mechanical Engineering, Quchan, Iran
autor
- Mashhad Powder Metallurgy, Mashhad, Iran
Bibliografia
- [1] M.T. Andani, N. Shayesteh-Moghaddam, C. Haberland, D. Dean, M.J. Miller, M. Elahinia, Acta. Biomater. 10 (10), 4058-4070 (2014).
- [2] P. Verma, R. Saha, D. Chaira, Powder. Technol. 326, 159-167 (2018).
- [3] J.M. Torralba, L. Fuentes-Pacheco, N. Garcia-Rodriguez, M. Campos, Adv. Powder. Technol. 24 (5), 813-817 (2013).
- [4] C. Barile, C. Casavola, S.L. Campanelli, G. Renna, Eng. Fail. Anal. 95, 273-282 (2019).
- [5] S. Chauhan, V. Verma, U. Prakash, P. C. Tewari, D. Khanduja, T. Indian. I. Metals. 71 (1), 219-224 (2018).
- [6] A. Garcia-Junceda, C. Diaz-Rivera, V. Gomez-Torralba, M. Rincon, M. Campos, J.M. Torralba, Mater. Sci. Eng. A. 740-741, 410-419 (2019).
- [7] L. Song-lin, H. Bai-yun, L. Yi-min, L. Shu-quan, L. Du-xin, F. Jin-lian, J. Feng, J. Cent. South. Univ. T. 10 (1), 1-6 (2003).
- [8] P.K. Kumar, N.V. Sai, A.G. Krishna, Arab. J. Sci. Eng. 43 (9), 4659-4674 (2018).
- [9] X. Yang, Y. Bai, M. Xu, S. Guo, J. Iron. Steel. Res. Int. 20 (7), 84-88 (2013).
- [10] S. Decker, S. Martin, L. Kruger, Metall. Mater. Trans. A. 47 (1), 170-177 (2016).
- [11] J. Park, S. Lee, S. Kang, J. Jeon, S. H. Lee, H. Kim, H. Choi, Powder. Technol. 284, 459-466 (2015).
- [12] K. Mahesh, S. Sankaran, P. Venugopal, J. Mater. Sci. Technol. 28 (12), 1085-1094 (2012).
- [13] F. Martin, C. Garcia, Y. Blanco, Wear. 328-329, 1-7 (2015).
- [14] X. Li, U. Olofsson, Tribol. Int. 110, 86-95 (2017).
- [15] A. Falkowska, A. Seweryn, A. Tomczyk, Int. J. Fatigue. 111, 161-176 (2018).
- [16] F. Deirmina, M. Pellizzari, Mater. Sci. Eng. A. 743, 349-360 (2019).
- [17] W. Li, H. Xu, X. Sha, J. Meng, W. Wang, C. Kang, X. Zhang, Z. Wang, Fusion. Eng. Des. 137, 71-78 (2018).
- [18] O. Bergman, D. Chasoglou, M. Dahlstrom, Met. Powder. Rep. 73 (1), 21-25 (2018).
- [19] T.K. Kandavel, R. Chandramouli, P. Karthikeyan, Mater. Des. 40, 336-342 (2012).
- [20] Y. Wu, R. M. German, D. Blaine, B. Marx, C. Schlaefer, J. Mater. Sci. 37 (17), 3573-3583 (2002).
- [21] M.W. Wu, W.Z. Cai, Z.J. Lin, S.H. Chang, Mater. Des. 133, 536-548 (2017).
- [22] G.A. Baglyuk, L.A. Sosnovskii, V.I. Volfman, Powder. Metall. Met. Ceram. 50 (3-4), 189-193 (2011).
- [23] S. Narayan, A. Rajeshkannan, J. Iron. Steel. Res. Int. 18 (9), 33-40 (2011).
- [24] A.A. Nikulina, A.I. Smirnov, A.A. Bataev, A.S. Ivashutenko, Mater. Charact. 129, 252-259 (2017).
- [25] M.W. Wu, Metall. Mater. Trans. A. 46 (1), 467-475 (2015).
- [26] M.W. Wu, Y.C. Fan, H.Y. Huang, W.Z. Cai, Metall. Mater. Trans. A. 46 (11), 5285-5295 (2015).
- [27] T. K. Kandavel, R. Chandramouli, Int. J. Adv. Manuf. Technol. 50 (1-4), 53-59 (2010).
- [28] W. Khraisat, L. Nyborg, Mater. Sci. Technol. 20 (6), 705-710 (2004).
- [29] H. Chen, P. Luo, Y. Yang, A. Long, S. Li, J. Mater. Eng. Perform. 26 (9), 4481-4490 (2017).
- [30] S. Gelinas, I. Bailon-Poujol, C. Blais, Mater. Sci. Eng. A. 730, 391-400 (2018).
- [31] R. Oro, E. Hryha, M. Campos, J.M. Torralba, Mater. Charact. 95, 105-117 (2014).
- [32] D.K. Behera, P. Tripathi, A.K. Chaubey, Mater. Today-Proc. 5 (1), 1704-1710 (2018).
- [33] M. Nabeel, R. Frykholm, P. Hedstrom, Powder. Metall. 57 (2), 111-118 (2014).
- [34] S. Haribabu, C. Sudha, S. Raju, R. N. Hajra, R. Mythili, J. Jayaraj, S. Murugesan, S. Saroja, Metall. Mater. Trans. A. 50 (3), 1-16 (2019).
- [35] M.A. Erden, S. Gunduz, M. Turkmen, H. Karabulut, Mater. Sci. Eng A. 616, 201-206 (2014).
- [36] D. Firoozbakht, S.A. Sajjadi, H. Beygi, H. Sazegaran, Ceram. Int. 44 (15), 18156-18163 (2018).
- [37] X. Deng, G.B. Piotrowski, J.J. Williams, N. Chawla, Int. J. Fatigue. 27, 1233-1243 (2005).
- [38] N. Kurgan, Mater. Des. 55, 235-241 (2014).
- [39] A. Falkowska, A. Seweryn, J. Szusta, Eng. Fract. Mech. 200, 146-165 (2018).
- [40] N. Chawla, X. Deng, Mater. Sci. Eng. A. 390 (1-2), 98-95 (2005).
- [41] Y. Zhu, G. Lin, M.M. Khonsari, J. Zhang, H. Yang, J. Mater. Process. Technol. 262, 41-52 (2018).
- [42] Y.I. Kim, W. Lee, J.M. Jang, S.W. Ui, G.S. An, H. Kwon, S.C. Choi, S.H. Ko, J. Alloy. Compd. 747, 211-216 (2018).
- [43] S. Gedevanishvili, S.C. Deevi, Mater. Sci. Eng. A 325 (1-2), 163-176 (2002).
- [44] R. Li, T. Yuan, X. Liu, J. Wang, H. Wu, F. Zeng, X. Zhou, T. Nonferr. Metal. Soc. 27, 1594-1601 (2017).
- [45] H.Y. Gao, Y.H. He, P.Z. Shen, Y. Jiang, C.T. Liu, Adv. Powder. Technol. 26, 882-886 (2015).
- [46] D.V. Dudina, B.B. Bokhonov, M.A. Legan, A.N. Novoselov, I.N. Skovorodin, N.V. Bulina, M.A. Esikov, V.I. Mali, Vacuum. 146, 74-78 (2017).
- [47] V.S. Warke, R.D. Sisson Jr., M.M. Makhlouf, Mater. Sci. Eng. A, 528 (10-11), 3533-3538 (2011).
- [48] S. Gunduz, M.A. Erden, H. Karabulut, M. Turkmen, Powder. Metall. Met. Ceram. 55 (5-6), 277-287 (2016).
- [49] M. Turkmen, Powder. Metall. Met. Ceram. 55 (3-4), 164-171 (2016).
- [50] T. Pieczonka, T. Schubert, S. Baunack, B. Kieback, Mater. Sci. Eng. A 478 (1-2), 251-256 (2008).
- [51] D. Kent, M. Qian, G.B. Schaffer, Powder. Metallurgy. 53 (2), 118-124 (2010).
- [52] G. Straffelini, V. Fontanari, Eng. Fract. Mech. 78 (6), 1067-1076 (2011).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9790bbdf-7d78-4885-9d75-3dcbf32ea1b7