PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental study of fuel combustion and emission characteristics of marine diesel engines using advanced fuels

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to explore the potential application of oxygenated fuels, polyoxymethylene dimethyl ethers (PODE), as an alternative fuel for marine diesel engines, the fuel combustion performance and gas emission characteristics of pure diesel oil, diesel-blended PODE, and pure PODE were tested on a marine diesel engine under different running conditions. The experimental results indicate that oxygen consumption can be reduced by diesel-blended PODE and pure PODE. The in-cylinder pressure and exothermic curve were consistent with the trend of diesel oil. Also, the ignition delay of diesel-blended PODE and pure PODE decreased, and the diffusion rate was accelerated, which helped to improve the combustion performance of diesel engines. Diesel blended PODE and pure PODE reduced the particulate matter (PM) emissions by up to 56.9% and 86.8%, respectively, and CO emissions by up to 51.1% and 56.3%, respectively. NOx emissions were gradually decreased with engine load. CO2 emissions were slightly increased, and the effective fuel consumption was increased up to 48% and 132%, respectively. It was shown that PODE could provide comparable power in a marine diesel engine and improve the fuel combustion and gas emission of the engine as a clean alternative fuel for marine diesel engines.
Rocznik
Tom
Strony
48--58
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Shanghai Maritime University, China
autor
  • Shanghai Maritime University, China
autor
  • Shanghai Maritime University, China
autor
  • Shanghai Maritime University, China
Bibliografia
  • 1. J.E. Jonson, M. Gauss, J.P. Jalkanen, L. Johansson, Effects of strengthening the Baltic Sea ECA regulations. Atmospheric Chemistry and Physics, 2019,19, pp.13469-13487.
  • 2. M. Karl, J.E. Jonson, A. Uppstu, A. Aulinger, M. Prank, M. Sofiev, J.P. Jalkanen, L. Johansson, M. Quante, V. Matthias, Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models. Atmospheric Chemistry and Physics, 2019, 519, pp. 7019-7053.
  • 3. Y.J. Wei, W. Kun, W.R. Wang, S.H. Liu, X. Chen, YJ. Yang, S.W. Bai, Comparison study on the emission characteristics of diesel- and dimethyl ether originated particulate matters. Applied Energy, 2014;130, pp. 357–369. doi:10.1016/j. apenergy.2014.05.058.
  • 4. H. Chen, J. He, H. Hua, Investigation on combustion and emission performance of a common rail diesel engine fueled with diesel/biodiesel/polyoxymethylene dimethyl ethers blends, Energy Fuel, 2017, 31, pp. 11710–11722.
  • 5. J.X. Wang, FJ. Wu, J.H. Xiao, S.J. Shuai, Oxygenated blend design and its effects on reducing diesel particulate emissions. Fuel, 2009, 88,pp.2037–2045. doi:10.1016/j. fuel.2009.02.045.
  • 6. N. Miyamoto, H. Ogawa, T. Arima, G.H. Cao, Improvement of diesel combustion and emissions with addition of various oxygenated agents to diesel fuels. 1998, 19, pp.154-156. https://doi.org/10.1016/S0389-4304(97)00065-9.
  • 7. N. Miyamoto, H. Ogawa, M. Nurun, K. Obata, T. Arima, Smokeless, low NOx, high thermal efficiency, and low noise diesel combustion with oxygenated agents as main fuel. 1998 SAE International Congress and Exposition, 1998. doi:10.4271/980506.
  • 8. M. Puškár, P. Tarbajovský, M. Lavcák, M. Soltesova, Marine Ancillary Diesel Engine Emissions Reduction Using Advanced Fuels. Journal of Marine Science and Engineering. 2022, 10. doi:10.3390/jmse10121895.
  • 9. K. Cheikh, A. Sary, L. Khaled, L. Abdelkrim, T. Mohand, Experimental assessment of performance and emissions maps for biodiesel fueled compression ignition engine. Applied Energy, 2016, 161, pp. 320–329.doi:10.1016/j. apenergy.2015.10.042.
  • 10. [10] B. Choi, X.L. Jiang, Y.K. Kim, G. Jung, C. Lee, I. Choi, C.S Song, Effect of diesel fuel blend with n-butanol on the emission of a turbocharged common rail direct injection diesel engine. Applied Energy, 2015, 146, pp. 20–28. doi:10.1016/j.apenergy.2015.02.061.
  • 11. M. Puškár, J. Živcák , M. Lavcák, M. Soltesova, M. Kopas, Analysis of Combustion Conditions for Sustainable DualFuel Mixtures. Sustainability, 2022, 14. doi:10.3390/ su142113962.
  • 12. Y.Y. Zheng, Q. Tang, T.F. Wang, Y.H. Liao, J.F. Wang, Synthesis of a green diesel fuel additive over cation resins. Chemical Engineering & Technology, 2013, 36, pp. 1951– 1956. doi:10.1002/ceat.201300360.
  • 13. R.Y. Sun, I. Delidovich, R. Palkovits, Dimethoxymethane as a Cleaner Synthetic Fuel: Synthetic Methods, Catalysts, and Reaction Mechanism. ACS Catalysis, 2019, 9, pp.1298– 1318. doi:10.1021/acscatal.8b04441.
  • 14. J. Burger, M. Siegert, E. Strofer, H. Hasse, Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel: Properties, synthesis and purification concepts. Fuel, 2010, 89, pp. 3315-3319. doi:10.1016/j.fuel.2010.05.014.
  • 15. J. Burger, E. Strofer, H. Hasse, Production process for diesel fuel components poly(oxymethylene) dimethyl ethers from methane-based products by hierarchical optimization with varying model depth. Chemical Engineering Research & Design, 2013, 91, pp.2648-2662. doi:10.1016/j. cherd.2013.05.023.
  • 16. D. Wang, G.L. Zhu, Z. Li, C.G. Xia, Polyoxymethylene dimethyl ethers as clean diesel additives: Fuel freezing and prediction. Fuel, 2018, 237, pp. 933-839. doi: 10.1016/j. fuel.2018.10.014.
  • 17. X. Xiao, T. Zheng, Y.F, Wang, Research on compatibility of PODE and diesel fuel. Diesel Engine, 2015, 37 ,pp.24–28.
  • 18. Z.B. Yang, C.X. Ren, S.Q Jiang, Y.Y Xin, Y.F Hu, Z.C Liu, Theoretical predictions of compatibility of polyoxymethylene dimethyl ethers with diesel fuels and diesel additives. Fuel, 2022, 307. doi: 10.1016/j. fuel.2021.121797.
  • 19. J.X. Ning, Q.Y. Qiu, H.X. Ma, L.Y Chen, Development and catalytic mechanism of ionic liquid catalysts for polyoxymethylene dimethyl ethers. Chemical Physics Letters,2023, 822. doi:10.1016/j.cplett.2023.140471.
  • 20. F.K. Yang, J.W. Wang, Research progress on the synthesis of diesel additive polymethoxydimethyl ether. Applied Chemical Industry, 2012, 41, pp.1803-1806.
  • 21. Y. Meng, H. Li, C.N. Dai, B.H. Chen, Z.G. Lei, X.G. Li, X. Gao, Innovative reactive distillation process for the ecofriendly Poly (oxymethylene) dimethyl ethers synthesis from methylal and trioxane. Separation and Purification Technology, 2021, 278. doi: 10.1016/j.seppur.2021.119538.
  • 22. R.J Zhu, X.B. Wang, H.Y. Miao, Z.H. Huang, J. Gao, D.M. Jiang, Performance and emission characteristics of diesel engines fueled with diesel-dimethoxymethane (DMM) blends. Energy&Fuels, 2009, 23, pp .286–293. doi: 10.1021/ ef8005228.
  • 23. Z. Wang, H.Y. Liu, J. Zhang, J.X. Wang, S.J. Shuai, Performance, combustion and emission characteristics of a diesel engine fueled with polyoxymethylene dimethyl ethers (PODE3-4)/diesel blends. Applied Energy, 2015, 75, pp.2337-2344. https://doi.org/10.1016/j.egypro.2015.07.479.
  • 24. W.X. Yang, Y. Wang, Y.Q. Bai, L. Hao, X. Liu, Experimental study of the bioethanol substitution rate and the diesel injection strategies on combustion and emission characteristics of dual-fuel-direct-injection (DFDI) engine. Journal of the Energy Institute,2023,106. https:// doi.org/10.1016/j.joei.2022.101153.
  • 25. J.H. Liu, P. Sun, H. Huang, J. Meng, X.H. Yao, Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends. Applied Energy, 2017,202, pp. 527-536. https://doi.org/10.1016/j. apenergy.2017.05.166.
  • 26. H.Y. Liu, Z. Wang, J. Zhang, JX. Wang, SJ. Shuai, Study on combustion and emission characteristics of polyoxymethylene dimethyl ethers/diesel blends in light-duty and heavy-duty diesel engines. Applied Energy, 2017, 185, pp.1393-1402. https://doi.org/10.1016/j. apenergy.2015.10.183.
  • 27. H.Y. Liu, Z. Wang, J.X. Wang, X. He, Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEn blends. Energy, 2016, 97, pp. 105-112. https://doi.org/10.1016/j. energy.2015.12.110.
  • 28. H.F. Wang, W.X. Ma, Research on the emission characteristics of diesel blended with PODE mixed fuel under small load conditions. Small Internal Combustion Engine and Vehicle Technology, 2020, 49, pp. 82-90.
  • 29. H.Z. Huang, Q.S. Liu, W.W. Teng, Q.X. Wang, The Potentials for Improving Combustion Performance and Emissions in Diesel Engines by Fueling n-butanol/diesel/ PODE3-4 Blends. Energy Procedia, 2017.105, pp. 914-920. https://doi.org/10.1016/j.egypro.2017.03.415.
  • 30. H.Chen, J.J. He, Z.M. Chen, L.M. Geng, A comparative study of combustion and emission characteristics of dual-fuel engine fueled with diesel/methanol and diesel– polyoxymethylene dimethyl ether blend/methanol. Process Safety and Environmental Protection, 2021, 147, pp.714722. https://doi.org/10.1016/j.psep.2021.01.007.
  • 31. J.H. Liu, Y. Liu, Q. Ji, P. Sun, X.C. Zhang, X.D. Wang, H.J. Ma, Effects of split injection strategy on combustion stability and GHG emissions characteristics of natural gas/diesel RCCI engine under high load. Energy,2023,266. https://doi.org/10.1016/j.energy.2022.126542.
  • 32. Z. Korczewski. Energy and emission quality ranking of newly produced low-sulphur marine fuels. Polish Marine Research, 2022, 29, pp. 77-87.doi:10.2478/pomr-2022-0045.
  • 33. G. Wu, G.H. Jiang, Z.Y. Yang, H.J. Wei, Z.J. Huang, Mechanism of emission and smoke elimination of marine diesel engine fueled with biodiesel. Journal of Harbin Engineering University, 2019, 40,pp.136-142.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-978bc1a4-1bce-4d07-a61b-bb8deffa48cb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.