PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An acoustic sea glider for deep-sea noise profiling using an acoustic vector sensor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An acoustic sea glider has been developed for ambient sea noise measurement and target detection through the deployment of an acoustic vector sensor (AVS). The glider was designed with three cabins connected in sequence and it can dive to depths exceeding 1200m. The AVS fixed on the glider measure acoustic pressure and particle velocities related to undersea noise, and the inner attitude sensors can effectively eliminate the estimation deviation of the direction of arrival. The inherent self-noises of the acoustic sea glider and AVS are presented respectively in respect to the Knudsen spectra of sea noise. Sea trial results indicate that the AVS could work well for undersea noise measurement when the glider is smooth sliding, and the target azimuth estimated by AVS after correction is remarkably consistent with the values measured by the GPS, and direction-finding errors are less than 10 degrees. The research in this paper shows that the acoustic sea glider is able to undertake tasks such as a wide range of underwater acoustic measurement and detection.
Rocznik
Tom
Strony
57--62
Opis fizyczny
Bibliogr. 16 poz., rys., tab.
Twórcy
autor
  • Naval Submarine Academy No. 1, Jinshui Road, Licang District 266199 Qingdao, China
  • Pilot National Laboratory for Marine Science and Technology (Qingdao) No.168 Wenhai Zhong Lu, Jimo District 266237 Qingdao China
autor
  • China Ship Scientific Research Center No. 222 Shanshui East Road Binhu District 214082 Wuxi China
  • Taihu Laboratory of Deepsea Technology and Science No. 222 Shanshui East Road Binhu District 214082 Wuxi China
Bibliografia
  • 1. X. Wu, P. Yu, G. Li, et al., “Numerical study of the effect of wing position on the dynamic motion characteristics of an underwater glider”, Polish Maritime Research. 2021. Vol. 28(2), 4‒17, doi: 10.2478/pomr-2021-0016.
  • 2. R. Zimmerman, G.L. D’Spain and C.D. Chadwell, “Decreasing the radiated acoustic and vibration noise of a mid-size AUV”, IEEE Journal of Oceanic Engineering. 2005. Vol. 30(1), 179‒187, doi: 10.1109/joe.2004.836996.
  • 3. K. Buszman, “Analysing the impact on underwater noise of changes to the parameters of a ship’s machinery”, Polish Maritime Research. 2020. Vol. 27(3), 176‒181, doi: 10.2478/ pomr-2020-0059.
  • 4. X. Yan, H. Song, Z. Peng, et al., “Review of research results concerning the modelling of shipping noise”, Polish Maritime Research. 2021. Vol. 28(2), 102‒115, doi: 10.2478/ pomr-2021-0027.
  • 5. K. Buszman and M. Gloza, “Detection of floating objects based on hydroacoustic and hydrodynamic pressure measurements in the coastal zone”, Polish Maritime Research. 2020. Vol. 27(2), 168‒175, doi: 10.2478/pomr-2020-0038.
  • 6. Y. Ju, Z. Wei, L. Huangfu, et al., “A new low SNR underwater acoustic signal classification method based on intrinsic modal features maintaining dimensionality reduction”, Polish Maritime Research. 2020. Vol. 27(2), 187‒198, doi: 10.2478/ pomr-2020-0040.
  • 7. M.R. Benjamin, D. Battle, D. Eickstedt, et al., “Autonomous control of an autonomous underwater vehicle towing a vector sensor array”, Proceedings of IEEE International Conference on Robotics and Automation, Rome, Italy, 2007. 4562‒4569, doi: 10.1109/robot.2007.364182.
  • 8. A. Mantouka, P. Felisberto, P. Santos, et al., “Development and testing of a dual accelerometer vector sensor for AUV acoustic surveys”, Sensors. 2017. Vol. 17(6), 1328, doi: 10.3390/s17061328.
  • 9. L. Liu, L. Xiao, S. Lan, et al., “Using Petrel II glider to analyze underwater noise spectrogram in the South China Sea”, Acoustic Australia. 2018. Vol. 46(2), 1–8,10. doi: 10.1007/ s40857-018-0126-y.
  • 10. C. Jiang, J. Li, W. Xu, “The use of underwater gliders as acoustic sensing platforms”, Applied Sciences. 2019. Vol. 9(22), 4839, doi: 10.3390/app9224839.
  • 11. S.E. Moore, B.M. Howe, K.M. Stafford, et al., “Including whale call detection in standard ocean measurements: application of acoustic sea gliders”, Marine Technology Society Journal. 2007. Vol. 41(4), 53–57, doi: 10.4031/002533207787442033.
  • 12. H. Matsumoto, S.E. Stalin, R. W. Embley, et al., “Hydroacoustics of a submarine eruption in the Northeast Lau Basin using an acoustic glider”, Oceans 2010 MTS/IEEE Seattle. WA, USA, 2010. 1‒6, doi: 10.1109/oceans.2010.5664494.
  • 13. L. Uffelen, E.H. Roth, B.M. Howe, et al., “A seaglider integrated digital monitor for bioacoustic sensing”, IEEE Journal of Oceanic Engineering. 2017. Vol. 42(4), 800–807, doi: 10.1109/joe.2016.2637199.
  • 14. P. Stinco, P. Guerrini, A. Tesei, et al., “Passive acoustic signal processing at low frequency with a 3-D acoustic vector sensor hosted on a buoyancy glider”, IEEE Journal of Oceanic Engineering. 2021. Vol. 46(1), 283‒293, doi: 10.1109/ joe.2020.2968806.
  • 15. K. Kim, T.B. Gabrielson and G.C. Lauchle, “Development of an accelerometer-based underwater acoustic intensity sensor”, Journal of the Acoustical Society of America. 2004. Vol. 116(6), 3384‒3392, doi: 10.1121/1.1804632.
  • 16. V.A. Gordienko, Vector-Phase Methods in Acoustics, Fizmatlit (in Russian). 2007.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu „Społeczna odpowiedzialność nauki” - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-977c926c-12f3-4074-b679-32a186584c5b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.