PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and characterization of poly(p-phenylenediamine): TiO2 nanocomposites and investigation of conducting properties for optoelectronic application

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Poly(p-phenylenediamine) is a potential precursor for designing of new materials for optoelectronic application. Synthesis and characterization of poly(p-phenylenediamine) – TiO2 nanocomposites has been demonstrated. Structural change observed due to the formation of nanocomposites was correlated with concomitant change in conducting behavior of the parent polymer. Polymer nanocomposite was synthesized through an in-situ oxidative polymerization technique with simultaneous dispersion of TiO2 nanoparticles. TiO2 nanoparticles were synthesized via sol-gel process. Structural characterization was accomplished by using conventional spectroscopic and imaging techniques. I-V measurement of the nanocomposites revealed that the nearly nonconducting poly(p-phenylenediamine) after structural modification exhibits conductivity of 10-6 S/cm leading to formation of wide band gap semiconducting materials.
Wydawca
Rocznik
Strony
296--304
Opis fizyczny
Bibliogr. 33 poz., tab., rys.
Twórcy
autor
  • Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, Pin: 797103, Nagaland, India
autor
  • Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, Pin: 797103, Nagaland, India
autor
  • Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, Pin: 797103, Nagaland, India
Bibliografia
  • [1] TROISI A., Nature. Mat., 8 (2009), 538.
  • [2] PAINTER P. C., COLEMAN M. M., Tech. Pub. CO Lan. PA., (1997).
  • [3] NAEGELE D., BITTHN R., Solid. State. Ionics, 28 (1988), 983.
  • [4] MUENCH S., WILD A., FRIEBE C., HÄUPLER B., JANOSCHKA T., SCHUBERT U.S., Chem. Rev., 116 (16) (2016), 9438.
  • [5] (a) BLANKENBURG L., SENSFUSS S., SCHACHE H., MARTEN J., MILKER R., SCHRODNER M., Synth.Met., 199 (2015), 93. (b) BENANTI T.L., VENKATARAMAN D., Photosynth. Res., 87 (2006), 73.
  • [6] BAKHSHI A.K., VALLA G., Mater. J. Sci. Ind. Res., 63 (2004), 715.
  • [7] KOVACIC P., JONES M. B., Chem. Rev., 87 (2) (1987), 357.
  • [8] PUZARI A., BARUAH J. B., React. Funct. Polym., 47 (2001), 147.
  • [9] (a) XU J.C., LIU W.M., LI H.L., Mater. Sci. Eng., 25 (4) (2005), 444. (b) ARORA R., MANDAL U.K., SHARMA P., SRIVASTAV A., Mater. Today Proc., 2 (2015), 2767.
  • [10] (a) AVU A., OK A., Synth. Met., 157(2007), 235.(b) GANESAN R., GEDANKEN A., Nanotech., 19 (43) (2008), 435709. (c) GANGOPADHYAY R., DE A., GHOSH G., Synth. Met., 123 (2001), 21.
  • [11] SONG Y., ZHANG J., YANG L., CAO S., YANG H., ZHANG J., JIANG L., DAN Y., RENDU P.L., NGUYEN T.P., Mater. Sci. Semicond. Proc., 42 (1) (2016), 54.
  • [12] (a) ZHANG Z.L., LI J.F., WANG X.L., QIN J.Q., SHI W.J., LIU Y.F., GAO H.P., MAO L., Nanoscale. Res. Let., 12 (2017), 43. (b) TSAI T.Y., YAN P.R., YANG S.H., Nanoscale Res. Let., 11 (2016), 516.
  • [13] PERUMAL S., SAMBANDAM C.G., PRABU K. M., ANANTHAKUMAR S., Int. J. Res. Eng. Tech., 3 (4) (2014), 651.
  • [14] BARUAH S., PUZARI A., Inorg. Nano. Met. Chem., 47 (11) (2017), 1542.
  • [15] CHEN T., LIANG B., XIN X., J. Phys. Chem. Solid., 58 (1997), 951.
  • [16] SANG L., ZHAO Y., BURDA C., Chem. Rev., 114 (19) (2014), 9283.
  • [17] TAO P., LI Y., RUNGTA A., VISWANATH A., GAO J., BENICEWICZ B. C., SIEGELA R. W., SCHADLER L.S., J. Mater. Chem., 21 (2011), 18623.
  • [18] CATALDO F., Eur. Polym. J., 32 (1) (1996), 43.
  • [19] MEDEROS A., DOMINGUEZ S., HERNANDEZMOLINA R., SAN-CHIZ J., BRITO F., Coord. Chem.Rev., 195 (1999), 857.
  • [20] ZHANG L., LIU P., SU Z., Polym. Degrad. Stab., 91 (2006), 2213.
  • [21] KUTVONEN A., ROSSI G., PUISTO S.R., ROSTEDT N.K.J., NISSILA T.A., J. Chem Phys., 137 (2012), 901.
  • [22] AVINASH B.S., CHATURMUKHA V.S., JAYANNA H.S., NAVEEN C.S., RAJEEVA M.P., HARISH B.M., SURESH S., LAMANI R., AIP Conf. Proc., 1728 (2016), 20426.
  • [23] NAKAMURA J., NEGISHI N., KUTSUNA S., IHARA T., SUGIHARA S., TAKEUCHI K., J. Mol. Catal., 161 (2000), 205.
  • [24] YOSHIKAWA A., MATSUNAMI H., NANISHI Y., Wide Bandgap Semiconductors. Springer, 2 (2007).
  • [25] LIU B., WEN L., ZHAO X., Mater. Chem. Phys., 106 (2007), 350.
  • [26] LIQIANG J., YICHUN Q., BAIQI W., SHUDAN L., BAOJIANG J., LIBIN Y., WEI F., HONGGANG F., JIAZHONG S., Sol. Energy Mater. Sol. C., 90 (2006), 1773.
  • [27] ABAZOVIC N.D., COMOR M.I., DRAMICANIN M.D., JOVANOVIC D.J., AHRENKIEL S.P., NEDELJKOVIC J.M., J. Phy. Chem. B., 110 (50) (2006), 25366.
  • [28] LIN C.C., LEE W.S., SUN C.C., WHU W.I.I., Ceram. Int., 34 (2008), 131.
  • [29] PENG C., ZHANG S., JEWELL D., CHEN G.Z., Prog. Nat. Sci., 18 (7) (2008), 777.
  • [30] (a) YANG T., ZHOU N., ZHANG Y., ZHANG W., JIAO K., LI G., Biosens. Bioelectron., 24 (2009), 216. (b) KORKUT S., KESKINLER B., ERHAN E., Talanta., 76 (2008), 1147.
  • [31] AZULAY D., FYLON M., ESHKENAZI Q., TOKER D., BALBERG M., SHIMONI N., MILLO O., BALBERG I., Phys. Rev. Lett., 90 (2003), 23660.
  • [32] NIKOLAEVA E.V., OZERIN S.A., GRIGORIEV E.I., CHVALUN S.N., GERASIMOV G.N., TRAKHTENBERG L.I., Mater. Sci. Eng. C., 8 (1999), 217.
  • [33] TRLICA J., SAHA P., QUADRAT O., STEJSKAL J., Physica A, 283 (2000), 337.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-977ad049-d1f8-4d92-a263-a711fc2ce7b2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.