PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Numerical analysis and experimental validation of conjunction gear via hot forging-upsetting finishing-radial extrusion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Numerical analysis and experimental validation of conjunction gear via hot forging-upsetting finishing-radial extrusion
Rocznik
Strony
391--404
Opis fizyczny
Bibliogr. 32 poz., fot., rys., wykr.
Twórcy
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
  • College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
autor
  • School of Mechanical Engineering, University of Science and Technology Beijing, Beijing 100083, China
Bibliografia
  • [1] Oica, 2017. http://www.oica.net/statement-delivered-by-oicapresident-matthias-wissmann-at-the-oica-pressconference-in-geneva-on-march-7-2018/.
  • [2] H. Xia, Y. Dong, Z. Huang, Application of precision forging technology in gear industry, in: 2005 (Xi'an) Symposium onGear Materials and Heat Treatment Technology Development Seminar, 2005, 204–218.
  • [3] T. Dean, The net-shape forming of gears, Mater. Des. 21 (2000) 271–278.
  • [4] L. Berviller, R. Bigot, P. Martin, Technological information concerning the integrated design of ‘‘net-shape’’ forged parts, Int. J. Adv. Manuf. Technol. 31 (2006) 247–257.
  • [5] S. Yang, Mathematical model of a helical gear with asymmetric involute teeth and its analysis, Int. J. Adv. Manuf. Technol. 26 (2005) 448–456.
  • [6] K. Ohga, K. Kondo, T. Jitsunari, Research on precision die forging utilizing divided flow, Bull. Jpn. Soc. Mech. Eng. 209 (1982) 1836–1842.
  • [7] J. Choi, Y. Choi, Precision forging of spur gears with inside relief, Int. J. Mach. Tools Manuf. 39 (1999) 1575–1588.
  • [8] J. Cai, T. Dean, Z. Hu, Alternative die designs in net-shape forging of gears, J. Mater. Process. Technol. 150 (2004) 48–55.
  • [9] C. Hu, Q. Liu, Y. Liu, Q. Wang, Analysis of metal flow and technology improvement on gear forging, Chin. J. Mech. Eng. 5 (2008) 186–190.
  • [10] C. Chen, Grain-size effect on the forging formability of mini gears, Int. J. Adv. Manuf. Technol. 79 (2015) 863–871.
  • [11] J. Sheu, C. Yu, Preform and forging process designs based on geometrical features using 2D and 3D FEM simulations, Int. J. Adv. Manuf. Technol. 44 (2009) 244–254.
  • [12] Z. Gao, J. Li, X. Deng, J. Yang, F. Chen, A. Xu, L. Li, Research on gear tooth forming control in the closed die hot forging of spiral bevel gear, Int. J. Adv. Manuf. Technol. 94 (2018) 2993–3004.
  • [13] M.H. Sadeghi, T. Dean, Analysis of dimensional accuracy of precision forged axisymmetric components, Proc. Inst. Mech. Eng. B: J. Eng. Manuf. 205 (1991) 171–178.
  • [14] J. Kang, K. Lee, J. Je, S. Kang, Spur gear forging tool manufacturing method considering elastic deformation due to shrink fitting, J. Mater. Process. Technol. 187–188 (2017) 14–18.
  • [15] B. Zuo, The key technology on precision forming process by hot forging and cold ironing of cylindrical spur gears. Ph.D. Thesis. University of Science and Technology, Beijing, 2015.
  • [16] J. Choi, Y. Choi, S. Tak, The forging of helical gears (II): comparisons of the forging processes, Int. J. Mech. Sci. 41 (1999) 725–739.
  • [17] Z. Li, B. Wang, W. Ma, L. Yang, Comparison of ironing finishing and compressing finishing as post-forging for netshape manufacturing, Int. J. Adv. Manuf. Technol. 86 (2016) 3333–3343.
  • [18] H. Liu, Q. Xi, Y. Huo, H. Sun, X. Zhang, Y. Li, B. Liu, J. Chen, Numerical simulation to mold modification of cold precision forging of spur gear, J. Xi'an Jiaotong Univ. 11 (2004) 1186–1190.
  • [19] O. Eyercioglu, Developments and performance analyses of precision forged spur gear, Ph.D. Thesis, The University of Birmingham, 1995.
  • [20] E.R.H. Stone, J. Cai, Z. Hu, T. Dean, An exercise in cold ironing as the post-forging operation for net-shape manufacture, J. Mater. Process. Technol. 135 (2003) 278–283.
  • [21] Y. Chang, Z. Hu, B. Kang, T. Dean, A study of cold ironing as a post-process for net-shape manufacture, Int. J. Mach. Tools Manuf. 42 (2002) 945–952.
  • [22] H. Ji, X. Huang, C. Ma, et al., Predicting the microstructure of a valve head during the hot forging of steel 21-4N, Metals 8 (6) (2018) 391.
  • [23] Q. Jin, X. Han, L. Hua, et al., Process optimization method for cold orbital forging of component with deep and narrow groove, J. Manuf. Process. 33 (2018) 161–174.
  • [24] S. Chen, Y. Qin, J.G. Chen, et al., A forging method for reducing process steps in the forming of automotive fasteners, Int. J. Mech. Sci. 137 (2018) 1–14.
  • [25] B. Zuo, B. Wang, Z. Li, N. Li, J. Lin, An investigation of involute and lead deflection in hot precision forging of gears, Int. J. Adv. Manuf. Technol. 88 (2017) 3017–3030.
  • [26] P. Wu, Investigation on combined forming process by hot forging and cold rolling for conjunction gear blanks, M.D. Thesis, University of Science and Technology, Beijing, 2016.
  • [27] S. Khalilpourazary, A. Dadvand, T. Azdast, M. Sadeghi, Design and manufacturing of a straight bevel gear in hot precision forging process using finite volume method and CAD/CAE technology, Int. J. Adv. Manuf. Technol. 56 (2011) 87–95.
  • [28] M. Skunca, P. Skakun, Z. Keran, L. Sidjanin, M. Math, Relations between numerical simulation and experiment In closed die forging of a gear, J. Mater. Process. Technol. 177 (2006) 256–260.
  • [29] H. Ji, J. Liu, B. Wang, Z. Zhang, T. Zhang, Z. Hu, Numerical analysis and experiment on cross wedge rolling and forging for engine valves, J. Mater. Process. Technol. 221 (2015) 233–242.
  • [30] X. Deng, L. Hua, X. Han, Y. Song, Numerical and experimental investigation of cold rotary forging of a 20CrMnTi alloy spur bevel gear, Mater. Des. 32 (2011) 1376–1389.
  • [31] M. Zou, W. Xu, P. Wang, Prediction of high temperature flow stress for AISI 4120 steel during hot compression, Appl. Mech. Mater. 233 (2012) 339–342.
  • [32] H. Ji, J. Liu, B. Wang, X. Fu, W. Xiao, Z. Hu, A new method for manufacturing hollow valves via cross wedge rolling and forging: numerical analysis and experiment validation, J. Mater. Process. Technol. 240 (2017) 1–11.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9773a772-c3c5-4f1f-b9af-2f314754699b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.