PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surface modification of ZrO2-10 wt. % CaO plasma sprayed coating

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Oxide ZrO2-CaO plasma-sprayed coatings were remelted using the modified gas tungsten arc welding (GTAW) method. The original two-burner set, generating a free independent arc, was used in the treatment. The samples were subjected to structural examination using light and scanning electron microscopes, and energy-dispersive X-ray microanalysis (EDX). A substantial heterogeneity of the plasma-sprayed coatings was found, observable with a laminar structure, significant porosity, and step change in the concentration of the elements. Significant changes in the structure were found after the remelting treatment. Both microscopic and EDX investigations showed that the treatment leads to a reduction in the heterogeneity of the chemical composition of the coating material and to a loss of structural characteristics typical for plasma-sprayed coatings.
Rocznik
Strony
937--942
Opis fizyczny
Bibliogr. 18 poz., rys., wykr.
Twórcy
autor
  • Faculty of Production Engineering and Materials Technology, Częstochowa University of Technology, 19 Armii Krajowej St., 42-200 Częstochowa, Poland
autor
  • Faculty of Mechanical Engineering and Computer Science, Częstochowa University of Technology, 21 Armii Krajowej St., 42-200 Częstochowa, Poland
Bibliografia
  • [1] J. Iwaszko and M. Strzelecka, “Effect of cw-CO2 laser surface treatment on structure and properties of AZ91 magnesium alloy”, Optics and Lasers in Engineering 81, 63–69 (2016).
  • [2] P. Poza, C.J. Munez, M.A. Garrido, S. Vezzu, S. Rech, and A. Trentin, “Effect of laser remelting on the mechanical behaviour of Inconel 625 cold-sprayed coatings”, Procedia Engineering 10, 3799–3804 (2011).
  • [3] I. Watanabe, M. McBridge, P. Newton, and K.S. Kurtz, “Laser surface treatment to improve mechanical properties of cast titanium”, Dental Material 25, 629–633 (2009).
  • [4] G. Zhuosen, W. Wenxian, C. Zeqin, and L. Yingqi, “TIG cladding + laser remelting of ZrAlNiCu amorphous coating”, Rare Metal Materials and Engineering 44 (7), 1597–1600 (2015).
  • [5] M. Romero da Silva, P. Gargarella, T. Gustmann, W. José Botta Filho, C.S. Kiminami, J. Eckert, S. Pauly, and C. Bolfarini, “Laser surface remelting of a Cu-Al-Ni-Mn shape memory alloy”, Materials Science & Engineering A661, 61–67 (2016).
  • [6] C. Taltavull, B. Torres, A.J. Lopez, P. Rodrigo, and J. Rams, “Novel laser surface treatments on AZ91 magnesium alloy”, Surface Coatings & Technology 222, 118–127 (2013).
  • [7] R. Colaco, E. Gordo, E.M. Ruiz-Navas, M. Otasevic, and R. Vilar, “A comparative study of the wear behaviour of sintered and laser surface melted AISI M42 high speed steel diluted with iron”, Wear 260 (9–10), 949–956 (2006).
  • [8] J. Iwaszko, K. Kudła, and M. Szafarska, “Remelting treatment of the non-conductive oxide coatings by means of the modified GTAW method”, Surface Coatings & Technology 206, Fig. 5. The results of EDX analysis 2845–2850 (2012).
  • [9] S. Adamiak, “Structure of X5CrNi18‒10 and S355NL steels after remelting with the electric arc”, Archives of Foundry Engineering 12 (2), 139–142 (2012).
  • [10] H.L. Tian, S.C. Wei, Y.X. Chen, H. Tong, Y. Liu, and B.S. Xu, “Surface remelting treated high velocity arc sprayed FeNiCrAlBRE coating by tungsten inert gas”, Physics Procedia 50, 322–327 (2013).
  • [11] K.N. Braszczyńska-Malik, M. Mróz, “Gas-tungsten arc welding of AZ91 magnesium alloy”, Journal of Alloys and Compounds 509, 9951–9958 (2011).
  • [12] D. Golański, G. Dymny, M. Kujawińska, and T. Chmielewski, “Experimental investigation of displacement/strain fields in metal coatings deposited on ceramic substrates by thermal spraying”, Solid State Phenomena 240, 174–182 (2015).
  • [13] J. Zimmerman, Z. Lindemann, D. Golański, T. Chmielewski, and W. Włosiński, “Modeling residual stresses generated in Ti coating thermally sprayed on Al2O3 substrates”, Bull. Pol. Ac.: Tech. 61 (2), 515–525 (2013).
  • [14] C. Zhu, P. Li, A. Javed, G.Y. Liang, and P. Xiao, “An investigation on the microstructure and oxidation behavior of laser remelted air plasma sprayed thermal barrier coatings”, Surface & Coatings Technology 206, 3739–3746 (2012).
  • [15] J. Matějíček and P. Holub, “Laser remelting of plasma-sprayed tungsten coatings”, Journal of Thermal Spray Technology 23 (4), 750–754 (2014).
  • [16] Ch. Li, Y. Wang, S. Wang, and L. Guo, “Laser surface remelting of plasma-sprayed nanostructured Al2O3–13 wt.% TiO2 coatings on magnesium alloy”, Journal of Alloys and Compounds 503, 127–132 (2010).
  • [17] X.C. Zhang, B.S. Xu, F.Z. Xuan, Z.D. Wang, and S.T. Tu, “Failure mode and fatigue mechanism of laser-remelted plasma-sprayed Ni alloy coatings in rolling contact”, Surface & Coatings Technology 205, 3119–3127 (2011).
  • [18] K. Kudła and J. Iwaszko, “Welding unit for modifying the surface layer of materials”, Patent PL 214653 B1, Opubl. 30.08.2013 WUP 08/13, Urząd Patentowy Rzeczypospolitej Polskiej, (2013), [in Polish].
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97719741-4bf1-4c87-937b-2a1ae2c54547
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.