PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Nonparametric Versus Parametric Reasoning Based on 22 Contingency Tables

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes scenarios of generating contingency tables (CTs) with the probability flow parameter (PFP). It also defines measures of untruthfulness of H0 that involve PFP for all proposed scenarios. This paper is an attempt to replace a nonparametric statistical inference method by the parametric one. The paper applies the maximum likelihood method to estimate PFP and presents instructions to generate CTs by means of the bar method. The Monte Carlo method is used to carry out computer simulations.
Twórcy
autor
  • The Pomeranian University, Institute of Mathematics 76-200 Słupsk, Poland
Bibliografia
  • [1] A. Agresti, Categorical Data Analysis, Wiley, New Jersey 2002.
  • [2] G. Van Belle, L.D. Fisher, P.J. Heagerty, T. Lumley, Categorical Data: Contingency Tables, John Wiley & Sons 2004.
  • [3] Y. Bishop, S. Fienberg, P. Holland, Discrete Multivariate Analysis – Theory and Practice, Cambridge, MA: MIT Press 1975.
  • [4] T.D. Wickens, Multiway Contingency Tables Analysis for The Social Sciences, Psychology Press 2014.
  • [5] T. Dickhaus, K. Straßburger, D. Schunk, C. Morcillo-Suarez, T. Illig, A. Navarro, How to Analyze Many Contingency Tables Simultaneously in Genetic Association Studies, Stat. Appl. Genet. Mol. Biol. 11(4), 12 (2012).
  • [6] R. El Galta, T. Stijnen, J.J. Houwing-Duistermaat. Testing for Genetic Association: A Powerful Score Test, Statistics in Medicine 27(22), 4596–4609 (2008).
  • [7] B. Cung, Crime and Demographics: An Analysis of LAPD Crime Data, UCLA Electronic Theses and Dissertations 2013.
  • [8] R. Iossifova, F. Marmolejo-Ramos, When The Body Is Time: Spatial and Temporal Deixis in Children with Visual Impairments and Sighted Children, Research in developmental disabilities 34(7), 2173–2184, (2013).
  • [9] P.D. Allison, J.K. Liker, Analyzing Sequential Categorical Data on Dyadic Interaction: A comment on Gottman, Psychological Bulletin, 91(2) 393–403 (1982).
  • [10] H.H. Bock, Two-Way Clustering for Contingency Tables: Maximizing A Dependence Measure, Between data science and applied data analysis, 143–154 (2003).
  • [11] S. Kaski, J. Nikkila, J. Sinkkonen, L. Lahti, J.E. Knuuttila, C. Roos, Associative Clustering for Exploring Dependencies Between Functional Genomics Data Sets, IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 2(3), 203–216 (2005).
  • [12] M. Steinle, K. Aberer, S. Girdzijauskas, C. Lovis, Mapping Moving Landscapes by Mining Mountains of Logs: Novel Techniques for Dependency Model Generation, [in:] Proceedings of the 32nd international conference on Very large data bases VLDB Endowment, pp. 1093–1102 (2006).
  • [13] P.J. Haas, F. Hueske, V. Markl, Detecting Attribute Dependencies from Query Feedback, [in:] Proceedings of the 33rd international conference on Very large data bases VLDB Endowment, pp. 830–841 (2007)
  • [14] I.F. Ilyas, V. Markl, P. Haas, P. Brown, A. Aboulnaga, CORDS: Automatic Discovery of Correlations and Soft Functional Dependencies, [in:] Proceedings of the 2004 ACM SIGMOD international conference on Management of data, ACM, pp. 647–658 (2004).
  • [15] T. Oates, P.R. Cohen, Searching for Structure in Multiple Streams of Data, [in:] ICML 96, pp. 346 (1996).
  • [16] M. Schrepp, A Method for the Analysis of Hierarchical Dependencies Between Items of a Questionnaire, Methods of Psychological Research Online 19, 43–79 (2003).
  • [17] J. Blitzstein, P. Diaconis, A Sequential Importance Sampling Algorithm for Generating Random Graphs with Prescribed Degrees, Internet mathematics 6(4), 489–522 (2011).
  • [18] N. Cressie, T.R. Read, Multinomial Goodness-Of-Fit Tests, Journal of the Royal Statistical Society. Series B (Methodological), 440–464 (1984).
  • [19] K. Pearson, On the Criterion that a given System of Deviations from the Probable in the Case of a Correlated System of Variables is such that it can be Reasonably Supposed to have Arisen from Random Sampling, Philosophy Magazine Series 50, 157–172 (1900).
  • [20] M.F. Freeman, J.W. Tukey, Transformations Related to the Angular and the Square Root, Annals of Mathematical Statistics 21, 607–611 (1950).
  • [21] R.R. Sokal, F.J. Rohlf, Biometry: the Principles and Practice of Statistics in Biological Research, Freeman, New York 2012.
  • [22] S. Kullback, Information Theory and Statistics, Wiley, New York 1959.
  • [23] J. Neyman, Contribution to the Theory of the Chi-Square Test, Proc. (First) Berkeley Symp. on Math. Statist. and Prob. (Univ. of Calif. Press), 239–273 (1949).
  • [24] P. Sulewski, Modyfikacja testu niezale˙zno´sci (Modification of he Independence Test), Statistical News 10, 1–19 (2013) (in Polish).
  • [25] P. Diaconis, B. Sturmfels, Algebraic Algorithms for Sampling from Conditional Distributions, The Annals of Statistics 26(1), 363–397 (1998).
  • [26] M. Cryan, M. Dyer, A Polynomial-Time Algorithm to Approximately Count Contingency Tables When the Number of Rows Is Constant, Journal of Computer and System Sciences 67(2), 291–310 (2003).
  • [27] M. Cryan, M. Dyer, L.A. Goldberg, M. Jerrum, R. Martin, Rapidly Mixing Markov Chains for Sampling Contingency Tables with A Constant Number of Rows, SIAM Journal on Computing 36(1), 247–278 (2006).
  • [28] Y. Chen, P. Diaconis, S.P. Holmes, J.S. Liu. Sequential Monte Carlo Methods for Statistical Analysis of Tables, Journal of the American Statistical Association 100(469), 109–120 (2005).
  • [29] G.S. Fishman, Counting Contingency Tables Via Multistage Markov Chain Monte Carlo, Journal of Computational and Graphical Statistics 21(3), 713–738 (2012).
  • [30] Y. Chen, I.H. Dinwoodie, S. Sullivant Sequential Importance Sampling for Multiway Tables, The Annals of Statistics, 523–545 (2006).
  • [31] R. Yoshida, J. Xi, S. Wei, F. Zhou, D. Haws, Semigroups and Sequential Importance Sampling for Multiway Tables, arXiv preprint arXiv:1111.6518 (2011).
  • [32] S. DeSalvo, J.Y. Zhao, Random Sampling of Contingency Tables Via Probabilistic Divide-And-Conquer. arXiv preprint arXiv:1507.00070 (2015).
  • [33] P. Sulewski, Two-By-Two Contingency Table as a Goodness-Of-Fit Test, CMST 15(2), 203–211 (2009).
  • [34] P. Sulewski, R. Motyka, Power Analysis of Independence Testing for Contingency Tables, Scientific Journal of Polish Naval Academy 56, 37–46 (2015).
  • [35] P. Sulewski, Moc testów niezależności w tablicy dwudzielczej większej ni˙z 2x2 (Power Analysis of Independence Testing for Two-way Contingency Tables bigger than 2x2), Przegląd Statystyczny 63(2), 191–209 (2016) (in Polish).
  • [36] P. Sulewski, Moc testów niezależności w tablicy trójdzielczej 2x2x2 (Power Analysis of Independence Testing for Three-way Contingency Table 2x2x2), Przegląd Statystyczny 63(4), 431–447 (2016) (in Polish).
  • [37] P. Sulewski, Power Analysis of Independence Testing for the Three-way Contingency Tables of Small Sizes, Journal of Applied Statistics, http://dx.doi.org/10.1080/02664763.2018.1424122 (2018).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-976f15c2-9fe1-41b6-a874-08a53adbb02f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.