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Abstract: The paper deals with the problem of selection 
of the most informative features. A new effective and 
efficient heuristic possibilistic clustering algorithm for 
feature selection is proposed. First, a brief description of 
basic concepts of the heuristic approach to possibilistic 
clustering is provided. A technique of initial data pre-
processing is described and a fuzzy correlation measure 
is considered. The new algorithm is described and then 
illustrated on the well-known Iris data set benchmark 
and the results obtained are compared with those by us-
ing the conventional, well-known and widely employed 
method of principal component analysis (PCA). Conclu-
sions and suggestions for future research are given.

Keywords: feature selection, fuzzy correlation measure, 
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1.	 Introduction
1.1. Preliminary Remarks

The reduction of dimensionality of the feature 
space analyzed is very important a problem in data 
analysis. Feature selection is meant here as the di-
mensionality reduction of the feature space of data 
that has initially contained a high number of features. 
The purpose of the future selection process is to 
choose a minimal number (subset) of the original set 
of features which still contain information that is es-
sential for the discovering of substructure in the data 
while reducing the computational complexity implied 
by using a high number of features in the source prob-
lem formulation. Feature selection has been a fertile 
field of research, and has been development since the 
1970s proving to be effective and efficient in remov-
ing irrelevant and/or redundant features, increas-
ing the efficiency of learning, improving the learning 
performance characterized by, for instance, predic-
tive accuracy, and enhancing the comprehensibility 
of results obtained. Many different feature selection 
methods have been proposed, cf. for example [1], [2], 
[3], and [4]. 

Fuzzy clustering methods can well be applied to 
solve the problem of feature selection. In particu-
lar, a combination of feature selection with feature 
weights and semi-supervised fuzzy clustering in ma-
chine learning is proposed by Kong and Wang [5]. 
On the other hand, a fuzzy feature selection method 
based on clustering was proposed by Chitsaz, Taheri, 

and Katebi [6]. In the corresponding FACA-algorithm, 
each feature is assigned to different fuzzy clusters 
with different grades of membership. This comes 
from the basic underlying idea that each feature may 
belong not only to just one cluster, and it is much bet-
ter to consider an association of each feature with 
other features in each cluster. Precise relations be-
tween features are therefore available during the se-
lection of the most relevant features. 

An extension of the FACA-algorithm is considered 
by Chitsaz, Taheri, Katebi and Jahromi [7] who have 
introduced four different techniques for implement-
ing the stage of feature selection. For example, by ap-
plying the chi-square test, their approach considers 
the dependence of each feature on class labels in the 
process of feature selection. 

1.2. A heuristic Approach to Possibilistic 
Clustering

The objective function based fuzzy clustering al-
gorithms are the most widely employed methods in 
fuzzy clustering (cf. Bezdek, Keller, Krishnapuram 
and Pal [8]). Some heuristic clustering algorithms are 
based on the definition of the very concept of a cluster 
and the purpose of these algorithms is to find clusters 
according how they have been defined. Such algo-
rithms are called direct classification (or clustering) 
algorithms (cf. Mandel [9]).

An outline of a new heuristic method of fuzzy 
clustering is presented by Viattchenin [10] who has 
considered a basic version of a direct clustering algo-
rithm, while a version of such an algorithm, called the 
D-AFC(c)-algorithm, is presented in Viattchenin [11]. 
The D-AFC(c)-algorithm can be considered as a direct 
possibilistic clustering algorithm, as in [11]. The D-
AFC(c)-algorithm has been shown there to be a basis 
for the family of other heuristic possibilistic cluster-
ing algorithms. 

The direct heuristic possibilistic clustering al-
gorithms can be divided into two types: relational 
and prototype-based. In particular, the family of di-
rect relational heuristic possibilistic clustering algo-
rithms includes:
–	 The D-AFC(c)-algorithm which is based on the 

construction of an allotment (to be defined later 
on in this paper) among an a priori given number  
c of partially separate fuzzy clusters [10];

– 	 The D-AFC-PS(c)-algorithm which is based on the 
construction of an allotment among an a priori 
given number c of partially separate fuzzy clusters 
in the presence of labeled objects [11];
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–	 The D-PAFC-algorithm which is based on the 
construction of an allotment among an unknown 
number of at least c  fully separate fuzzy clusters 
[12].
It should be noted that the D-PAFC-algorithm 

can be applied to solve the problem of informative 
feature selection. The corresponding method was 
also proposed by Viattchenin [12].

On the other hand, the family of direct prototype-
based heuristic possibilistic clustering algorithms, 
proposed by Viattchenin [13], includes:
–	 The D-AFC-TC-algorithm which is based on the 

construction of an allotment among an unknown 
number c of fully separate fuzzy clusters;

–	 The D-PAFC-TC-algorithm which is based on the 
construction of a principal allotment among an 
unknown minimal number of at least c  fully 
separate fuzzy clusters;

–	 The D-AFC-TC(α)-algorithm which is based on the 
construction of an allotment among an unknown 
number c  of fully separate fuzzy clusters with 
respect to a minimal value a  of a tolerance 
threshold.
The unique allotment among an unknown number 

ñ  of fuzzy clusters can be selected from the set of al-
lotments depending on a tolerance threshold.

The main goal of this paper is to propose a new 
effective and efficient heuristic possibilistic clustering 
algorithm for solving the feature selection problem. 
The contents of this paper is as follows: in Section 
2 some basic concepts of the heuristic approach to 
possibilistic clustering are briefly presented. In Sec-
tion 3 a fuzzy correlation measure is proposed and 
a suitable method of data preprocessing is shown. In 
Section 4 the new heuristic possibilistic clustering al-
gorithm is described. In Section 5 the new method is 
illustrated on the well-known benchmark example of 
the Iris data set, and a comparison with the results 
obtained by using the well-known and widely em-
ployed method of the principal components analysis 
(PCA) is presented. Conclusions are given in Section 6.

2.	 Outline of the Heuristic Possibilistic 
Clustering Algorithm
Let us remind the basic idea of, and the concepts 

related to the heuristic approach to possibilistic clus-
tering. The concept of a fuzzy tolerance relation is the 
basis for the concept of a fuzzy a–cluster and that is 
why the definition of a fuzzy tolerance relation must 
be considered in the first place.

Let 1{ }= nX x ,...,x  be the initial set of elements and 
: [0 1]× →T X X ,  be some binary fuzzy relation 

on X with ( ) [0 1]∈mT i jx ,x , , ∀ ∈i jx ,x X , being its 
membership function. 

A fuzzy tolerance relation is a fuzzy binary relation 
which is symmetric, i.e.

	 ( ) ( )=m mT i j T j ix ,x x ,x , ∀ ∈i jx ,x X,	 (1)

and reflexive, i.e.

	 ( ) 1=mT i ix ,x , ∀ ∈ix X .	 (2)

A fuzzy similarity relation S is a fuzzy binary rela-
tion which is symmetric (1), reflexive (2), and (max-
min)-transitive, i.e.:

	 ( ) ( ) ( ))
∈

≥ ∨ ∧m m mS i k S i j S j kx Xj
x ,x ( x ,x x ,x ,	

	 ∀ ∈i j kx ,x ,x X .	 (3)

Let some fuzzy binary relation be represented by 
a matrix R of size n×n, and let us define

	 1 =R R , 1−=n nR R Ro , 2 3=n , ,K .	 (4)

Now, the transitive closure of a fuzzy relation R is 
the fuzzy binary relation R

(
 defined by 

	 1 2= nR R R R
(

U UKU ,	 (5)

where the operation U  for two fuzzy relations dR  
and gR  is defined as 

	 ( ) ( ) ( )µ = µ ∨ µi j i j i j
R S R Rd g d gx ,x x ,x x ,x

U
,	

	 ∀ ∈i jx ,x X ,	 (6)

and the composition gd RR o  of two fuzzy relations 
dR  and gR  is defined as 

	 i k i j j kx XR R R Rd g d gj
x x x x x x( , ) [ ( , ) ( , )]

∈
= ∨ ∧m m m

o
, 	

	 Xxx ki ∈∀ , .	 (7)

It should be noted that the transitive closure T
(

 of 
a fuzzy tolerance relation T is a fuzzy similarity rela-
tion S. 

Let a be the a-level value of the fuzzy tolerance re-
lation T, (0 1]a ∈ , . The columns and rows of the fuzzy 
tolerance matrix (relation) are fuzzy sets 1{ }nA ,..., A   
on X. Let {1 }∈l , ,nK , be a fuzzy set on X with  

( ) [0 1]∈m i
Al x , , ∀ ∈ix X , being its membership func-

tion. The a-level fuzzy set

 { }( ) ( ( )) ( )= ≥ ∈a m m al
i i i i

A Al lA x , x | x , x X  

a fuzzy a -cluster. So, ( ) ⊆a
l lA A , (0 1]∈a , , 

1{ }∈l nA A , , AK , and ( )m i
Al x  is the degree of mem-

bership of the element ∈ix X  in some fuzzy a-cluster 
( )a
lA , (0 1]∈a , , {1 }∈l , ,nK . This degree of membership 

will be denoted by mli , for simplicity. The value of a  is 
a tolerance thresh- old of elements of the fuzzy a-
cluster. The membership degree of an element ∈ix X  
in some fuzzy a -cluster ( )a

lA , (0,1]∈a , {1, , }∈l nK , 
can be defined as a

	
( ),

0,

 ∈= 


am
m

l
i i

A
li

l x x A

otherwise
	 (8)
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where the a-level { | ( ) }= ∈ ≥a m al
i i

AlA x X x , (0,1]∈a , 
of the fuzzy set  lA  is the support of the fuzzy a-clus-
ter ( )a

lA .
The value of the membership function of each element 

of the fuzzy a-cluster is the degree of similarity of the object 
to some typical object (member) of the fuzzy a-cluster. 

Moreover, this membership degree defines a possi-
bility distribution function for some fuzzy a-cluster ( )a

lA
, (0,1]∈a , to be denoted by ( )pl ix .

Let 1
( ) ( ){ ,..., }a a

nA A  be the family of fuzzy a-clusters 
for some a, (0,1]∈a . The point ∈ atl l

e A  such that 

	
argmax=t ml

e lixi
, ∀ ∈ a

l
ix A 	 (9)

is called a typical point of the fuzzy a-cluster ( )a
lA , 

(0,1]∈a , [1, ]∈l n . Obviously, a fuzzy a-cluster can 
have several typical points, and therefore the symbol 
e is the index of a particular typical point. 

Let ( )( ) { | 1, , 2 }a= = ≤ ≤a l
zR X A l c c n be the family of 

fuzzy a-clusters, for some value (0,1]∈a  of the toler-
ance threshold, which are generated by a fuzzy toler-
ance relation T on the initial set of elements 

1{ ,..., }= nX x x . 
If the condition 

	 1

0
=

>∑ m
c

li
l

, ∀ ∈ix X 	 (10)

is met for all ( )a
lA , 1,=l c , ≤c n , then this family is an 

allotment of elements of the set 1{ ,..., }= nX x x  among 
the fuzzy a-clusters ( ){ , 1, ,2 }= ≤ ≤a

lA l c c n , for some 
value (0,1]∈a  of the tolerance threshold. It should be 
noted that several allotments ( )a

zR X  can exist for any 
tolerance threshold. That is why the symbol z is used 
an the index of a particular allotment. 

The allotment among the fuzzy a-clusters can be 
considered as a possibilistic partition and the fuzzy 
a-clusters meant in the sense of (8) are elements of 
a possibilistic partition (cf. Krishnapuram and Keller 
[14]). However, our next analyses will proceed using 
the concept of an allotment as introduced above. 

A next relevant concept will now be introduced. 
An allotment ( )( ) { | 1, , (0,1]}= = ∈a

a al
IR X A l n  of the 

set of objects among n fuzzy a-clusters for some 
threshold a is the initial allotment of the set 

1{ ,..., }= nX x x . In other words, if the initial data are 
represented by a fuzzy tolerance matrix (relation) T, 
then the rows and/or columns of this matrix are fuzzy 
sets XAl ⊆ , nl ,1= , and the a-level fuzzy sets 

⊆lA X, 1,=l n, and the a-level fuzzy sets ( )a
lA , 1,=l n, 

(0,1]∈a , are the fuzzy a-clusters. These fuzzy a-clus-
ters constitute an initial allotment for some tolerance 
threshold (0,1]∈a  and they can be considered as 
clustering components.

If some allotment ( )( ) { | 1, , }= = ≤a
a

l
zR X A l c c n  is 

considered to be appropriate for the formulation of 
a specific problem under consideration, then this al-
lotment is an adequate allotment. In particular, if the 
conditions

1

( ) ( )
=

≥∑ a

c
l

l

card A card X , ( ) ( )∀ ∈ a
a

l
zA R X , (0,1]∈a

	 ( ( )) =a
zcard R X c ,	 (11)

and 

	 ( )∩ ≤a a
l mcard A A w , ( ) ( ),∀ a a

l mA A , ≠l m , (0,1]∈a 	

(12)

are met for all fuzzy a-clusters ( )a
lA , 1,=l c , of some 

allotment ( )( ) { | 1, , }= = ≤a
a

l
zR X A l c c n , then this is the 

allotment among the particular separate fuzzy a-clus-
ters, and {0, , }∈w nK  is the maximum number of ele-
ments in the intersection of different fuzzy a-clusters. 
If  0=w   in the conditions (11) and (12), then this is 
the allotment among fully separate fuzzy a-clusters.

An  adequate allotment ( )a
zR X , for some value 

(0,1]∈a  of the tolerance threshold, is a family of a-clus-
ters which are elements of the initial allotment ( )a

IR X  
for that value of a , and the family of fuzzy a-clusters 
satisfies the conditions (11) and (12). Clearly, several ad-
equate allotments can exist. Thus, the problem consists 
in the selection of the unique adequate allotment ( )∗R X  
from the set B of adequate allotments, { ( )}= a

zB R X , 
which is the class of possible solutions of the classifica-
tion problem considered, and { ( )}= a

zB R X  depends on 
the parameters of that classification problem. 

On the other hand, the concept of a principal allot-
ment was introduced by Viattchenin [12] and defined 
as follows: an allotment ( )( ) { | 1, }= =a

a
l

PR X A l c  of the 
set of objects among the minimal number c, 2 ≤ ≤c n , 
of fully separate fuzzy a-clusters, for some tolerance 
threshold (0,1]∈a , is the principal allotment of the 
set },...,{ 1 nxxX = .

The selection of the unique adequate allotment 
from the set { ( )}= a

zB R X  of adequate allotments is 
made on the basis of an evaluation of allotments. The 
criterion employed for the evaluation of allotments is

	 1 1

1( ( ), )
= =

= − ⋅∑ ∑a a m a
nc

z li
l il

l
F R X c

n
,	 (13)

where c is the number of fuzzy a-clusters in the allot-
ment ( )a

zR X  and ( )= a
l

ln card A , ( ) ( )∈ a
a

l
zA R X , is the 

number of elements in the support of the fuzzy a-
cluster ( )a

lA .
The maximum value of the criterion (13) corre-

sponds to the best allotment of objects among c fuzzy 
a-clusters. So, the classification problem can be char-
acterized formally as the determination of an optimal 
solution ( )∗R X  satisfying

	
( )

( ) arg max ( ( ), )∗

∈
= a

a
az

R X Bz
R X F R X ,	 (14)

where { ( )}= a
zB R X  is the set of adequate allotments 

corresponding to the formulation of the particular 
classification problem considered.

3. A Fuzzy Correlation Measure
A prototype based clustering methods can be ap-

plied if the objects are represented as points in some 
multidimensional space ( )mI X . The respective data, 
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composed of n objects and m attributes, are then rep-
resented as ˆ ˆ[ ]× = t

n m iX x , 1, ,=i nK , 1, ,=t mK . Let 
1{ ,..., }= nX x x  be the set of objects. Then, the data ma-

trix can be represented as follows: 

	

1 2
1 1 1
2 2
2 2 2

1 2

ˆ ˆ ˆ
ˆ ˆ ˆˆ

ˆ ˆ ˆ

×

 
 
 =
 
  

m

m

n m

m
n n n

x x x
x x x

X

x x x

K

K

K K K K

K

.	  (15)

that is, be represented as 1ˆ ˆ ˆ( , , )= mX x xK  containing n-
dimensional column vectors ˆ tx , 1, ,=t mK , com-
posed of elements of the t-th column of X̂ . The data 
can be normalized as follows [15]:

ˆ ˆmin

ˆ ˆmax min

−
=

−

t t
i it t

i t t
i itt

x x
x

x x
, 1, ,=i nK , 1, ,=t mK . (16)

so that each attribute can be interpreted as a fuzzy 
set tx , mt ,,1 K= , with ( )µ i

xt x  being its member-
ship function.

Let tx  and kx , , {1, , }∈t k mK , be two fuzzy sets 
with their corresponding membership functions 

( )m i
xt x  and ( )m i

xk x , respectively. 
A fuzzy correlation measure is defined by Chaud-

huri and Bhattacharya [16] as follows:

1

1 1
1

1 1

( ) ( )
( , ) 1

( ) ( )

l l

=

= =

 
 

µ µ 
 = − −
             

∑
∑ ∑

l l
l lm m

n i it k x x

i n n

i i
x xi i

t k

t k

x x
r x x

x x

,	
 

(17)

where 0 < < ∞l  is a parameter. As noted by Chaud-
huri and Bhattacharya [16], the computational com-
plexity clearly increases with the increase of l .

The matrix of fuzzy correlation coefficients for 
the data can be normalized as follows [similarly as in 
(16)]: 

),(min),(max

),(min),(
),(~

,,

,
kt

kt

kt

kt

kt

kt

kt

kt

xxrxxr

xxrxxr
xxr

−




 −
= .	  (18)

so that the matrix of fuzzy correlation coefficients 
after normalization can be viewed as the matrix of a 
fuzzy tolerance relation.

4. Description of the New Algorithm
The idea of the proposed new algorithm is that at-

tributes can be classified and a typical point of each 
fuzzy a-cluster can be considered to constitute an 
informative attribute. The proposed algorithm finds 
an unknown number c of disjoint fuzzy a-clusters 
and assigns each attribute to one of the clusters. The 
attributes in each cluster should have a high correla-
tion with each other while being poorly correlated 
with attributes in other clusters. This method uses 

the fuzzy correlation (17) as the similarity measure. 
The proposed algorithm can be considered as some 
modification of Viattchenin’s [11] [12] D-PAFC-TC-
algorithm used for informative features selection, and 
will therefore be called the D-PAFC-TC-FS. 

The new algorithm is basically a classification pro-
cedure which involves 10 steps:

1.	 Construct the matrix of the fuzzy tolerance rela-
tion [ ( , )]× = mm m T t kT x x , t, k=1, …, m, by normaliz-
ing the initial data ]ˆ[ˆ t

imn xX =× , 1, ,=i nK , 
1, ,=t mK , according to (16) and (17); 

2.	 Construct the transitive closure T
(

 of the fuzzy tol-
erance relation T due to (4) – (7);

3.	 Construct the ordered sequence of a -levels, for 
0 10 1< < < < < < ≤a a a aZlK K , by the decom-

position of the transitive closure T
(

of the fuzzy tol-
erance relation T; 

4.	 Construct the fuzzy relation  ( )1aT
(

 for the consecu-
tive values of 1a , 1 (0,1]∈a ;

5.	 Construct the initial allotment ( )1( ) { }=a
a

l
IR X A  for 

the fuzzy relation ( )1aT
(

; construct the allotments 
which satisfy the conditions (11) and (12), for 

0=w ;
6.	 Construct the class of possible solutions of the 

classification problem 1
1( ) { ( )}= aa zB R X  and cal-

culate the value of criterion (13) for each allot-
ment 1

1 ( ) ( )∈a azR X B ;
7.	 Check:

if for some unique allotment 1
1 ( ) ( )∈a azR X B  the 

condition (14) is met
then the allotment is the result of classification

1 ( )a
PR X  for the value 1a  sought, and STOP 

else select the subset of allotments 1 1'( ) ( )⊆a aB B  
which satisfy the condition (14) and go

to step 8;
8. Perform the following operations for each allot-

ment 1
1 ( ) '( )∈a azR X B :

8.1	 Set 1:=l ;
8.2	 Find the support ( )1 1( ) =a a

l lSupp A A  of the fuzzy a-
cluster (á )

1
1 ( )∈ al

zA R X  and construct the matrix 
of attributes [ ]× = t

n m ilX x , 1∈ a
t lx A , 1, ,=i nK ,

 for 1a
lA , where 1( )= a

l
ln card A ;

8.3	 Calculate a prototype },...,{ 1 n
l xx=τ  of class 

1a
lA  according to the formula:

	   

1

1

∈

= ∑
a

t
i i

l x At l
x x

n
, ni ,,1 K= ;	

 

8.4	 Calculate the fuzzy correlation ( , )t tl lr  between 
the typical point tl  of the fuzzy a-cluster ( )1a

lA  
and its prototype t l ;

8.5	 Check:
if not all fuzzy a-clusters ( ) ( )

1
1 ( )∈ a

a
l

c zA R X  have been 
tested

then set : 1= +l l  and go to step 8.2
else go to step 9
9.	 Compare the fuzzy a-clusters ( )1a

lA  which are el-
ements of different allotments 1

1 ( ) '( )∈a azR X B , 
and take the allotment 1

1 ( ) '( )∈a azR X B  in which 
the fuzzy correlation ( , )t tl lr  is minimal for all 
fuzzy a-clusters ( )1a

lA  obtained as a results of the 
classification 1 ( )a

PR X ;
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10.	 Select as the most informative attributes the typ-
ical points of fuzzy a-clusters of the principal al-
lotment 1 ( )a

PR X  obtained.
The results of the classification sought are the typ-

ical points of the obtained principal allotment 
( )

1
1( ) { | 1, }= =a

a
l

PR X A l c  among fully separate fuzzy 
a-clusters and the value of the tolerance threshold 

1 (0,1]∈a .

5. An Illustrative Example
The application of the D-PAFC-TC-FS-algorithm to 

feature selection can be illustrated on the well-known 
Iris data benchmark which was presumably first giv-
en by Anderson [17]. The Iris data set concerns the 
different types of Iris flowers and consists of values 
of the sepal length, sepal width, petal length and petal 
width for 150 Iris varieties. The problem is to classify 
the plants into three subspecies on the basis of this in-
formation. Let us consider the problem of most infor-
mative feature selection in the setting of this data set.

The Iris data set forms the matrix of attributes 
4 150 ˆ[ ]× = t

iX x , 1, ,150=i K , 1, ,4=t K , in which the se-
pal length vector is denoted by 1x̂ , the sepal width vec-
tor is denoted by 2x̂ , the petal length vector is denoted 
by 3x̂ , and the petal width vector is denoted by 4x̂ . 

The D-PAFC-TC-FS-algorithm was applied directly 
to the normalized matrix of attributes for different 
values of the parameter l , 0 < < ∞l . The principal 
allotment among two fuzzy a-clusters was ob-

tained in all cases. For example, the results of using 
the D-AFC-TC-FS-algorithm for 1=l  are presented in 
Table 1. The corresponding principal allotment 

0.6692( )PR X  was obtained for the value of the tolerance 
threshold equal 0.6692=a .

By executing the D-PAFC-TC-FS-algorithm for 
2=l  we also obtain two fuzzy a-clusters in the prin-

cipal allotment 0.5583( )PR X . The matrix of the principal 
allotment 0.5583( )PR X  is presented in Table 2.

For 3=l  we obtain the principal allotment 
0.4917( )PR X  among two fuzzy a-clusters. The corre-

sponding matrix is presented in Table 3.
The second feature 2x̂  is the typical point of the 

first fuzzy a-cluster and the third feature 3x̂  is the 
typical point of the second fuzzy a-cluster in each 
case. Obviously, the features 2x̂  and 3x̂  can be select-
ed as the most informative features. So, the two-di-
mensional projection of the Iris data can be construct-
ed as presented in Figure 1.

Two well separated classes can be distinguished, 
and then visualized. The first class corresponds to the 
Iris Setosa. The second class corresponds to the Iris 
Versicolor and Iris Virginica. The objects known to be 
the Iris Setosa are represented by ∎ in Figure 1, those 
known to be the Iris Versicolor are represented by ○, 
and those known to be the Iris Virginica are repre-
sented by ∎. 

It is worth noticing that the result is similar to that 
obtained by using the conventional method of the prin-

Figure 1. Results for the Iris data set
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cipal component analysis (cf. Sato-Ilic and Jain [18]). An 
interpretation of the obtained principal components can 
be made on the basis of factor loading. The factor loading 
is defined as a correlation coefficient between the v -th 
principal component vz  and the t-th attribute ˆ tx , 

1, ,=t mK , as follows [18]:

	

ˆcov{ , }ˆ( , )
ˆ{ } { }

=
t

t v
v t

v

z x
f z x

V z V x
,	  (19)

where  { }vV z  is the variance of vz , ˆ{ }tV x  is the vari-
ance of ˆ tx , and ˆcov{ , }t

vz x  is the covariance between 
vz  and ˆ tx .

In Table 4 the values of factor loadings (19) are 
shown which can represent a relationship between 
each principal component and each attribute.

From the results obtained we can see how each 
component is explained by the attributes. This is re-
lated to the interpretation of each component.

In Table 4 the first principal component is mainly 
explained by the attributes: sepal length, petal length, 
and petal width. Moreover, we can see a high correla-
tion between the second principal component and the 
attribute of sepal width.

From the comparison between the results ob-
tained and shown in Tables 1, 2, 3 and 4, we can see 
similar outcomes. In particular, in Table 4, values of 
the membership function of the first fuzzy a-cluster 
of the principal allotment in each case can be inter-
preted as the normalized values of factor loadings 

2 ˆ( , )tf z x , 1, ,4=t K , and values of the membership 
function of the second fuzzy a-cluster of the principal 
allotment can be considered as the normalized values 
of factor loadings 1 ˆ( , )tf z x , 1, ,4=t K .

6. Concluding Remarks
First, from a more general point of view, one 

should mention that the concepts of a fuzzy a -clus-
ter and allotment have quite a clear epistemological 
motivation. That is why the results of application of 
the possibilistic clustering method based on the con-
cept of allotment can be very well interpreted. 

The D-PAFC-TC-FS-algorithm of possibilistic clus-
tering is proposed in this paper. The determination of 
an unknown number of the most informative features 
is the main feature of the proposed algorithm. The D-
PAFC-TC-FS-algorithm can be considered as a version 
of the method of extremal grouping of features. The 
algorithm is based on the concept of a principal allot-
ment among the fuzzy a-clusters, and an unknown 
minimal number of compact and well-separated fuzzy 
a-clusters is the result of classification. The typical 
points of the fuzzy a-clusters can be selected as the 
most informative features. Moreover, the D-PAFC-TC-
FS-algorithm does not depend on parameters and 
can be applied directly to the data given as a matrix 
of attribute values. The results of application of the 
algorithm proposed to the Iris data show that the D-
PAFC-TC-FS-algorithm is an effective and efficient nu-
merical procedure for solving the informative feature 
selection problem.

As for future extensions, for instance, the pro-
posed D-PAFC-TC-FS-algorithm can be extended by 
including different fuzzy correlation measures exem-
plified by those proposed by Murthy, Pal and Dutta 
Majumder [19], and Chiang and Lin [20]. 
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2 0.5583 0.0000 1.0000 0.7635
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