PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Effect of volcanic tuff on the engineering properties of compressed earth block

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper is to investigate the durability and the mechanical properties, including compressive and flexural strengths, of the locally compressed earth blocks manufactured from soil in Irbid, Jordan. Moreover, effect of volcanic tuff as new stabilizer material on properties of compressed earth block (CEB). Compressed earth block is a technique that was created to solve environmental and economic problems in construction sector. It is widespread in many countries around the world but hasn't been used in Jordan yet. Design/methodology/approach: 9 mixtures were carried out. One of this mixture is the control mix, beside other mixtures were performed by replacing soil with 40%, 10%, 10%, of sand, volcanic tuff, and lime respectively. In addition, polypropylene fibre was used. After 28 days of curing, the CEB were dried in oven at 105°C for 24 hours then tested. Findings: Show that absorption and erosion were decreased when the lime used in the soil. On the other hand, the fibres presence significantly improved the durability and mechanical properties in all mixtures. Moreover, the higher compressive strength was obtained in the mixtures which contain lime only while the higher tensile strength was obtained in the mixtures which contain lime with sand replacement. The using of volcanic tuffs produced average compressive strength values. The reason is that in the presence of lime and pozzolana (volcanic tuff) reactions take place at low and slow rate at early ages. Research limitations/implications: volcanic tuff can produce favourable compressive strengths at later ages and this is a point of interest in the future work. Originality/value: Searching for a new material as stabilizer material that improves the properties of the compressed earth block (CEB).
Rocznik
Strony
5--16
Opis fizyczny
Bibliogr. 53 poz.
Twórcy
autor
  • Civil Engineering Department, Hijjawi Faculty of Engineering and Technology, Yarmouk University, Irbid, 21163, Jordan
  • Giza High Institute of Engineering & Technology, Awel Misr Assiut El Zeraay Rd., El Monib, Giza, Egypt
autor
  • Civil Engineering Department, Hijjawi Faculty of Engineering and Technology, Yarmouk University, Irbid, 21163, Jordan
  • Hijawi Faculty of Engineering and Technology, University of Yarmouk, Irbid, 21163, Jordan
  • Hijawi Faculty of Engineering and Technology, University of Yarmouk, Irbid, 21163, Jordan
  • Hijawi Faculty of Engineering and Technology, University of Yarmouk, Irbid, 21163, Jordan
Bibliografia
  • [1] Centre for Development of Industry (CDI), Compressed Earth Blocks (CEB), African Regional Organization for Standardization ARSO, 1996.
  • [2] Earth Building Association of Australia (EBAA) Building with earth bricks and rammed earth in Australia, Wangaratta, Australia, EBAA, 2004.
  • [3] ASTM International, Standard Guide for Design of Earthen Wall Building Systems: ASTM E2392/E2392- 10, West Conshohocken, PA, ASTM International, 2010.
  • [4] Bureau of Indian Standards (BIS), Indian Standard Code of practice for manufacture and use of stabilized soil blocks for masonry, Indian Standards IS 1725, Part I: Specifications for stabilized soil blocks for masonry; Part II: Code of practice for manufacture and construc- tion using stabilized soil blocks, New, BIS, 2011.
  • [5] Associaęao Brasileira de Normas Tecnicas ABNT, Rio de Janeiro, 1984-1996.
  • [6] Instituto Colombiano de Normas Tecnicas y Certifi- cación (ICONTEC), Bloques de suelo cemento para muros y divisiones. Definiciones. Especificaciones. Metodos de ensayo, Condiciones de entrega, NTC 5324. Bogota, 2004.
  • [7] AFNOR, Compressed earth blocks for walls and partitions: definitions - specifications - test methods - delivery acceptance conditions, AFNOR XP, P13 - 901, St Denis de la Plaine, France, AFNOR, 2001.
  • [8] Kenya Bureau of Standards (KEBS), Specifications for stabilized soil blocks. KS02-1070:1993, Nairobi, 1999.
  • [9] Standards New Zealand (NZS), NZS 4297: Engineering Design of Earth Buildings, NZS 4298: Materials and Workmanship for Earth Buildings, incorp. Amend. No.1, NZS 4299: Earth Buildings Not Requiring Specific Design, incorp. Amend, No. 1, Wellington, New Zealand, 1998.
  • [10] National Building Standards, Technical Building standard NTE E. 080: Adobe, Lima, Peru, SENCICO, 2000.
  • [11] Asociación Espanola de Normalisación y Certificación (AENOR), Bloques de tierra comprimada para muros y tabiques. Definiciones, especificaciones y metodos de ensayo, UNE 41410, Madrid, 2008.
  • [12] Sri Lanka Standards Institution, Specification for compressed stabilized earth blocks, Colombo, Sri Lanka, Sri Lanka Standard (SLS), 1382, 2009.
  • [13] Institut National de la Normalisation et de la Propriete d’Industrielle (INNOPRI) (1998), Blocs de terre comprimee - Specifications techniques. NT 21.33 (1996), Blocs de terre comprimee - Definition, classification et designation. NT 21.35 (1996), Tunis.
  • [14] Turkish Standard Institution TSE (1995-1997) Cement Treated Adobe Bricks. TS 537 (1985), Adobe Blocks and Production Methods TM 2514 (1997), Adobe Buildings and Construction Methods TM 2515 (1985), Ankara.
  • [15] W.A. Banker-Hix, The effect of clay, cement and fibers on the strength and durability of compressed earth blocks, CEB Testing, 2014, 18.
  • [16] G.F. Middleton, L.M. Schneider, Bulletin 5, Earth-wall Construction, Fourth Edition, 1987.
  • [17] Standards Australia and Walker P. HB 195. The Australian earth building handbook. Sydney, Australia: Standards Australia, 2002.
  • [18] A. Tadege, Study of compressed cement stabilized soil block as an alternative wall making material, 2007, 47-52.
  • [19] C. Egenti, J.M. Khatib, D. Oloke, High carbon fly ash and soil in a shelled compressed earth block, International Journal of Interdisciplinary, Research and Innovations 3/4 (2015) 61-65.
  • [20] Y. Cai, B. Shi, C.W.W. Ng, C.S. Tang, Effect of polypropylene fiber and lime admixture on engineering properties of clayey soil, Engineering Geology 87/3-4 (2006) 230-240. DOI: https://doi.org/10.1016/j.enggeo.2006.07.007
  • [21] B. Taallah, A. Guettala, S. Guettala, A. Kriker, Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers, Construction and Building Materials 59 (2014) 161-168. DOI: https7/doiorg/10.10.16j.ęonbuildmat.2014.02.058
  • [22] M. Mostafa, N. Uddin, Experimental analysis of Compressed Earth Block (CEB) with banana fibers resisting flexural and compression forces, Case Studies in Construction Materials 5 (2016) 53-63. DOI: https://doi.org/10.1016/j.cscm.2016.07.001
  • [23] S.S. Namango, D. Starovoytova Madara, Compressed Earth Blocks Reinforced with Sisal Fibres, Journal of Agriculture, Pure and Applied Science and Technology 10 (2014) 10-22.
  • [24] A.B. Laibi, P. Poullain, N. Leklou, M. Gomina, D.K.C. Sohounhloue, Influence of the Kenaf Fiber Length on the Mechanical and Thermal Properties of Compressed Earth Blocks (CEB), KSCE Journal of Civil Engineering 22 (2018) 785-793. DOI: https://doi.org/10.1007/s12205-017-1968-9
  • [25] R. Medjo Eko, E.D. Offa, T. Yatchoupou Ngatcha, L. Seba Minsili, Potential of Salvaged Steel Fibers for Reinforcement of Unfired Earth Blocks, Construction and Building Materials 35 (2012) 340-346. DOI: https://doi.org/10.1016/j.conbuildmat.2011.11.050
  • [26] UNE 41410. Bloques de tierra comprimida para muros y tabiques. Deniciones, especicaciones y metodos de ensayo. Technical report, AENOR, Madrid, 2008.
  • [27] ASTM D2487-17: Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System).
  • [28] B.V. Venkatarama Reddy, Design of a manual press for the production of compacted stabilized soil blocks, Current Science 109 (2015) 1651-1660.
  • [29] M.R. Hall, R. Lindsay, M. Krayenhoff, Modern earth buildings, Vol. 13, Woodhead Publishing Limited, 2012, 335.
  • [30] ASTM D6780/D6780M-19: Standard Test Methods for Water Content and Density of Soil In situ by Time Domain Reflectometry (TDR).
  • [31] J.-C. Morel, A. Pkla, P. Walker, Compressive strength testing of compressed earth blocks, Construction and Building Materials 21/2 (2007) 303-309. DOI: https://doi.org/10.1016/j.conbuildmat.2005.08.021
  • [32] P.G. Ottazzi, N.C. Martins, N.J. Vargas, J. Ribas, R.A. San Bartolome, S. de Silva, Recomendaciones para la elaboración de normas tecnicas de edificaciones de adobe, Tapial, ladrillos y bloques de suelo cemento. Red tematica XIV. A: HABITERRA. Sistematización del uso de la tierra en viviendas de interes social. ladrillos y bloques de suelo cemento. Red Tematica Xivahabiterra-Cyted, France, 1995.
  • [33] G. Ruiz, X. Zhang, W. Edris, I. Canas, L. Garijo, A comprehensive study of mechanical properties of compressed earth blocks, Construction and Building Materials 176 (2018) 566-572. DOI: https://doi.org/10.1016/j.conbuildmat.2018.05.077
  • [34] A. Corbin, C. Augarde, Fracture energy of stabilized rammed earth, Procedia Materials Science 3 (2014) 1675-1680. DOI: https://doi.org/10.1016Zj.mspro.2014.06.270
  • [35] M. Elices, G.V. Guinea, J. Planas, Measurement of the fracture energy using three-point bend tests. Part 3 - influence of cutting the P-S tail, Materials and Structures 25 (1992) 327-334. DOI: https://doi.org/10.1007/BF02472591
  • [36] M. Elices, G.V. Guinea, J. Planas, Measurement of the fracture energy using three-point bend tests. Part 1 - Influence of experimental procedures, Materials and Structures 25 (1992) 212-218. DOI: https://doi.org/10.1007/BF02473065
  • [37] J. Planas, M. Elices, G.V. Guinea, Measurement of the fracture energy using three-point bend tests. Part 2 - Influence of bulk energy dissipation, Materials and Structures 25 (1992) 305-312. DOI: https://doi.org/10.1007/BF02472671
  • [38] ASTM C67-14: Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile.
  • [39] P.J. Yttrup, K. Diviny, F. Sottile, Development of drip test for the erodibility of mud bricks, Deakin University, Geelong, Australia, 1981.
  • [40] J. Cid-Falceto, F.R. Mazarrón, I Canas, Assessment of compressed earth blocks made in Spain: International durability tests, Construction and Building Materials 37 (2012) 738-745. DOI: https ://doi.org/10.1016/j. conbuildmat.2012.08.019
  • [41] ASTM C618-12a. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete. Book of standards volume (04.02), 1994.
  • [42] O.H. Ingles, Chapter 38: Soil stabilization, In: F.G. Bell (ed.), Ground Engineer's Reference Book, Butter- worths, London, 1987, 38/1-38/26.
  • [43] Bulletin 5. Earth-wall construction. National Building Technology Centre, Fourth Edition, Australia, 1987.
  • [44] H. Houben, H. Guillaud, Earth construction. A compre- hensive guide, Intermediate Technology, London, 1994.
  • [45] O. Izemmouren, A. Guettala, S. Guettala, Mechanical Properties and Durability of Lime and Natural Pozzolana Stabilized Steam-Cured Compressed Earth Block Bricks, Geotechnical and Geological Engineering 33 (2015) 1321-1333. DOI: https://doi.org/10.1007/s10706-015-9904-6
  • [46] H.B. Nagaraj, M.V. Sravan, T.G. Arun, K.S. Jagadish, Role of lime with cement in long-term strength of compressed stabilized earth, International Journal of Sustainable Built Environment 3/1 (2014) 54-61. DOI: https://doi.org/10.1016/j.ijsbe.2014.03.001
  • [47] F.G. Bell, Lime stabilization of clay minerals and soil, Engineering Geology 42/4 (1996) 223-237. DOI: https://doi.org/10.1016/0013-7952(96)00028-2
  • [48] A. Ammari, K. Bouassria, M. Cherraj, H. Bouabid, S. Charif D’ouazzane, Combined effect of mineralogy and granular texture on the technico-economic optimum of the adobe and compressed earth blocks, Case Studies in Construction Materials 7 (2017) 240-248. DOI: https://doi.org/10.1016/j.cscm.2017.08.004
  • [49] B.V. Venkatarama Reddy, S.R. Hubli, Properties of lime stabilised steam-cured blocks for masonry. Materials and Structures 35/5 (2002) 293-300. DOI: https://doi.org/10.1007/BF02482135
  • [50] B.V. Venkatarama Reddy, K. Gourav, Strength of lime-fly ash compacts using different curing techniques and gypsum additive, Materials and Structures 44/10 (2011) 1793-1808. DOI: https://doi.org/10.1617/s11527-011-9738-5
  • [51] B.V. Venkatarama Reddy, S.S. Lokras, Steam-cured stabilized soil blocks for masonry construction, Energy Build 29/1 (1998) 29-33. DOI: https://doi.org/10.1016/S0378-7788(98)00033-4
  • [52] R. de’ Gennaroa, P. Cappellettib, G. Cerric, M. de’ Gennarob, M. Dondid, A. Langellae, Zeolitic tuffs as raw materials for lightweight aggregates, Applied Clay Science 25/1-2 (2004) 71-81. DOI: https://doi.org/10.1016/j.clay.2003.08.005
  • [53] K. Hu, X. Chen, J. Chen, X. Ren, Laboratory investigation of the effect of nano-sislica on unconfined compressive strength and frost heaving characteristics of silty clay, Soil Mechanics and Foundation Engineering 55 (2018) 352-357. DOI: https://doi.org/10.1007/s11204-018-9548-7
Uwagi
Błędna liczba pozycji bibliografii w artykule
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-976c67c7-44db-4dd3-bb4e-e8d869e8f7d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.