PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Kamienie milowe & wyzwania ekonofizyki a także socjofizyki cz. 1

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Omówiono kamienie milowe ekonofizyki a także socjofizyki wybrane w kontekście wyzwań, jakie stawia współczesna społeczno-ekonomiczna rzeczywistość. Wskazano na ich rolę w budowaniu obszarów badawczych ekonofizyki i socjofizyki [1, 2, 3, 4 ].
EN
We discuss the milestones of econophysics and sociophysics. We chose them in the context of the challenges posed by contemporary socio-economic reality. We indicate their role in building research areas in econophysics and sociophysics [1, 2, 3, 4 ].
Czasopismo
Rocznik
Strony
11--20
Opis fizyczny
Bibliogr. 97 poz., rys.
Twórcy
  • Wydział Fizyki Uniwersytetu Warszawskiego; przewodniczący sekcji FENS PTF (Fizyka w Ekonomii i Naukach Społecznych)
Bibliografia
  • [1] Marcel Ausloos, Dariusz Grech, Tiziana Di Matteo, Ryszard Kutner, Christophe Schinckus, H. Eugene Stanley: Manifesto for a postpandemic modeling, Physica A: Statistical Mechanics and its Applications 559,125086 (2020)
  • [2] Entropy, SI open access: Three Risky Decades: A Time for Econophysics?, Ryszard Kutner, Christophe Schincks, and H. Eugene Stanley (Eds.)
  • [3] Physica A, VSI: Econophysics and sociophysics in turbulent world, Marcel Ausloos, Dariusz Grech, Tiziana Di Matteo, Ryszard Kutner, Christophe Schinckus, and H. Eugene Stanley (Eds.)
  • [4] Ryszard Kutner, Marcel Ausloos, Dariusz Grech, Tiziana Di Matteo, Christophe Schinckus, and H. Eugene Stanley: Econophysics and sociophysics: Their milestones & challenges, Physica A: Statistical Mechanics and its Applications 516, 240-253 (2019)
  • [5] C.-H. Saint-Simon, Lettres d’un habitant de Geneve a ses contemporains, (University of Lausanne Publications, Lausanne, 1803).
  • [6] A. Quetelet, Sur 1’homme et le developpement de ses facultes, ou Essai de physiąue sociale, (Paris: Guillaumin et Cie, Paris, 1835).
  • [7] A. Comte, A generał view of positivism E (Discours sur l’Espritpositif,E1844), (London Routledge, London, 1856).
  • [8] W. Weidlich, The statistical description of polarization phenomena in society, Br. J. Math. Stat. Psychol. 24(2), 251 (1971).
  • [9] E. Callen and D. Shapiro, A theory of social imitation, Physics Today 12(2), 23 (1974).
  • [10] M.H.R. Stanley, L.A.N. Amaral, S.V. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M.A. Salinger, and H. E. Stanley, Scaling Behavior in the Growth of Companies, Nature 379, 804 (1996).
  • [11] E. Majorana, II valore delle leggi statistiche nellafisica e nelle scienze sociali, Scientia, Quarta serie, Febbraio-Marzo 1942, 58. English translation: E. Majorana, The value of statistical laws in physics and social sciences, Quant. Finance 5,133 (2005).
  • [12] S. Galam, Sociophysics: a personal testimony, Physica A 336(2), 49 (2004).
  • [13] K. Wilson and J. Kogut, The renormalization group and the e-expansion, Phys. Rep. 112, 75 (1974).
  • [14] S. Galam, Social paradoxes of majority rule voting and renormalization group, J. Stat. Phys. 61, 943 (1990).
  • [15] S. Galam, Real space renormalization group and totalitarian paradox of majority rule voting, Physica A 285, 66 (2000).
  • [16] S. Galam, A review of Galam models, arXiv: 0803.1800vl [physics.soc-ph] 12 Mar 2008.
  • [17] M. Ausloos, Econophysics: Comments on a Few Applications, Successes, Methods and Models,
  • [18] Ph. Mirowski, More heat than light: economics as social physics, physics as natures economics, Historical perspectives on modern economics, (Cambridge Univ. Press, Cambridge, 1989).
  • [19] M. Shabas, A world ruled by number: William Stanley Jevons and the rise of mathematical economics, (Princeton Univ. Press, Princeton, 1990).
  • [20] N.W. Watkins, G. Pruessner, S.C. Chapman, N.B. Crosby, H.J. Jensen, 25 Years of Self-organized Criticality: Concepts and Controversies, Space Sci. Rev. 198, 3 (2016).
  • [21] E. Bonabeau, G. Theraulaz G, and J.L. Deneubourg, Phase diagram ofa model of self-organizing hierarchies, Physica A 217, 373 (1995).
  • [22] D. Sornette, Discrete-scale Invariance and Complex Dimensions, Phys. Rep. 297, 239 (1998).
  • [23] N. Vandewalle, M. Ausloos, Ph. Boveroux, and A. Minguet, How thefnancial crash ofOctober 1987 could have been predicted, Eur. Phys. J. B 4,139 (1998).
  • [24] N. Vandewalle, M. Ausloos, Ph. Boveroux, and A. Minguet, Visualizing the log-periodic pattern before crashes, Eur. Phys. J. B 9, 355 (1999).
  • [25] A. Aleksiejuk and J. Hołyst, Self-organized Criticality in Model of Collective Bank Bankrutcies, Int. J. Modern Phys. C 13, 333 (2002).
  • [26] Th. Kron and Th. Grund, Society as a Self-Organized Critical System, Cybernetics and Human Knowings 16, 65 (2009).
  • [27] A. Steyer and J.-B. Zimmermann, Self Organised Criticality in Economic and Social Networks. The Case of Innovation Diffusion in Economics with Heterogeneous Interacting Agents, A. Kirma and J.-B. Zimmermann (Eds.) Lecture Notes in Economics and Mathematical Systems Vol. 503 (Springer-Verlag, Berlin 2001) p. 27.
  • [28] Louis Bachelier: Theorie de la speculadon, Annales scientifiques de 1’E.N.S. 3e serie, tome 17 (1900), p. 21-86.
  • [29] B.M. Roehner, Patterns of Speculation. A Study in Observational Econophysics, (Cambridge Univ. Press, Cambridge, 2000).
  • [30] G. Tusset, From Galileo to Modern Economics - 2018. The Italian Origins of Econophysics, eBook collection 2018, eBook
  • [31] R.N. Mantegna, Levy walks and enhanced diffusion in Milan Stock-Exchange, Physica A 179, 232 (1991).
  • [32] R.N. Mantegna and H.E. Stanley, Scaling behaviour in the dynamics of economic index, Nature 376, 46 (1995).
  • [33] R.N. Mantegna and H.E. Stanley, An Introduction to Econophysics. Correlations and Complexity in Finance, (Cambridge Univ. Press, Cambridge, 2002).
  • [34] K. Kiyono, Z.R. Struzik, and Y. Yamamoto, Criticality and Phase Transitions in Stock-Price Fluctuations, Phys. Rev. Lett. 96, 068701 (2006).
  • [35] M.M. Dacorogna, R. Gencay, U.A. Muller, R.B. Olsen, O.V. Pictet, An Introduction to High Freąuency Finance (Academic Press, 2001).
  • [36] R. Cont, Empirical Properties of Asset Returns: Stylized Facts and Statistical Issues, Quant. Finance 1, 223 (2001).
  • [37] S. Sinha, A.S. Chakrabarti, and M. Mitra, Discussion & Debate: Can Economics be a Physical Science?, European Physical Journal Special Topics 225:3087 (2016).
  • [38] W. Barfuss, G. P. Massara, T. Di Matteo, T. Aste, Parsimonious Modeling with Information Filtering Networks, Phys. Rev. E 94, 062306 (2016).
  • [39] Zhi-Qiang Jiang, Wen-Jie Xie, Wei-Xing Zhou, and Didier Sornette, Multifractal analysis of financial markets: a review, Reports on Progress in Physics 82(12), 125901 (2019), DOI: 10.1088/1361- 6633/AB42FB
  • [40] The application of econophysics, Proceedings of the Second Nikkei Econophysics Symposium, H. Takayasu (Ed.) (Springer-Verlag, Tokyo, 2004).
  • [41] Practical Fruits of Econophysics, Proceedings of the Third Nikkei Econophysics Symposium, H. Takay- asu (Ed.) (Springer-Verlag, Tokyo, 2006).
  • [42] Y. Liu, L.A.N. Amaral, P. Cizeau, P. Gopikrishnan, M. Meyer, C.-K. Peng, and H.E. Stanley, Fluctuations and Their Correlations in Econophysics in Anomalous Diffusion. From Basics to Applications, R. Kutner, A. Pękalski, and K. Sznajd-Weron (Eds.), LNP 519,197 (1999).
  • [43] D. Sornette, A. Johansen, and J.-P. Bouchaud, Stock market crashes, prekursors and replicas, J. Physiąue I, France 6,167 (1996).
  • [44] D. Sornette and A. Johansen, Largefnancial crashes, Physica A 245, 411 (1997).
  • [45] D. Sornette, Why Stock Market Crash: Critical Events in Complex Financial Systems, (Princeton Univ. Press, Princeton 2003).
  • [46] J. Kwapień and St. Drożdż, Physical approach to complex systems, Physics Reports 515,115 (2012).
  • [47] M. Ausloos, K. Ivanova, and N. Vandewalle, Crashes: symptoms, diagnoses and remedies, in Empirical sciences of financial fluctuations. The advent of econophysics, Tokyo, Japan, Nov. 15-17, 2000, Conference Proceedings, H. Takayasu, (Ed.) (Springer Verlag, Berlin, 2002) pp. 62-76.
  • [48] M. Kozłowska, A. Kasprzak, R. Kutner, Fractional Market Model and its verifcation on the Warsaw Stock Exchange, Int. J. Mod. Phys. C 19 (2008) 453.
  • [49] H. E. Hurst, Long-Term Storage Capacity of Reservoirs, Trans. Am. Soc. Civ. Eng. 116, 770 (1951).
  • [50] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, A. L. Goldberger, Mosaic organization of DNA nucleotides, Phys. Rev. E 49 (1994) 1685.
  • [51] G. Rotundo, M. Ausloos, C. Herteliu, B.V. Ileanu, Hurst exponent of very long birth time series in XX century Romania. Social and religious aspects, Physica A 429,109 (2015).
  • [52] C. Herteliu, B.V. Ileanu, M. Ausloos, and G. Rotundo, Effect of religious rules on time of conception in Romania from 1905 to 2001, Humań Reproduction 30 (9), 2202 (2015).
  • [53] D. Grech and Z. Mazur, Gan One Make any Crash Prediction in Finance using the Local Hurst Exponent Idea? Physica A 336 (2004) 133-145.
  • [54] D. Grech and G. Pamuła, The local Hurst exponent of the financial time series in the vicinity of crashes on the Polish stock exchange market, Physica A 387 (2008) 4299.
  • [55] Ł. Czarnecki, D. Grech and G. Pamuła, Comparison study of global and local approaches describing critical phenomena on the Polish stock exchange market, Physica A (2008) 6801.
  • [56] L. Kristoufek, Local Scaling Properties and Market Turning Points at Prague Stock Exchange, Acta Phys. Pol. B 41 (2010) 1223.
  • [57] A. K. Mansurov, Forecasting currency crisis by fractal analysis technique, Studies on Russia Economic Development (SRED), Vol.l9, No 1 (2008) 96.
  • [58] J. Alvarez-Ramirez, J. Alvarez, E. Rodriguez, G. Fernandez-Anaya, Time-Varying Hurst Exponent for US Stock Markets, Physica A 387 (2008) 6159.
  • [59] K. Karpio, A. J. Orłowski, and P. Łukasiewicz, Stock Indicesfor Emerging Markets, Acta Phys. Pol. A 117, 619 (2010).
  • [60] X. Shao-jun, J.Xue-jun, Predicting drastic drop in Chinese stock market with local Hurst exponent, Proceedings of ICMSE Conference (2009) p.1309-1315.
  • [61] J. A. O. Matosa, S. M. A. Gama, H. J. Ruskin, A. A. Sharkasi, M. Crane, Time and scale Hurst exponent analysis for financial markets, Physica A 387 (2008) 3910.
  • [62] S. Stavroyiannis, V. Nikolaidis and I. A. Makris, On the multifractal properties and the local multifractality sensitivity index of euro to Japanese yen foreign currency exchange rates, Glob. Business and Econ. Rev. 13 (2011) 93.
  • [63] N. Vandewalle and M. Ausloos, Coherent and random sequences in financial fluctuations, Physica A 246, 454 (1997).
  • [64] M. Ausloos and K. Ivanova, Correlations Between Reconstructed EUR Exchange Rates versus CHF, DKK, GBP, JPY and USD, Int. J. Mod. Phys. C 12, 169 (2001).
  • [65] K. Ivanova and M. Ausloos, False euro (FEUR) exchange rate correlated behaviors and investment strategy, Eur. Phys. J. B 20, 537 (2001).
  • [66] D. Sornette, G. Quillon (Eds.) Dragon-kings: mechanism, evidence and empirical evidence, Eur. Phys. J. ST 205(1) 2012.
  • [67] J.W. Kantelhardt, S.A. Zschiegnera, E. Kościelny- Bunde, S. Havlin, A. Bunde, and H.E. Stanley, Multifractal Detrended Fuctuation Analysis of Nonstationary Time Series, Physica A 316, 87 (2002).
  • [68] R.J. Buonocore, T. Di Matteo, and T. Aste, Asymptotic scaling properties and estimation ofthe Generalized Hurst Exponents in financial data, Phys.Rev.E 95, 042311 (2017).
  • [69] R.J. Buonocore, T. Aste, and T. Di Matteo, Measuring multiscaling in financial time-series, Chaos, Solitons and Fractals 88, 38 (2016).
  • [70] C. Beck and F. Schlogl, Thermodynamics of chaotic systems. An introduction, (Cambridge Univ. Press, Cambridge, 1995).
  • [71] T. Lux and M. Marchesi, Scaling and criticality in a stochastic multi-agent model of financial markets, Nature 397,498 (1999).
  • [72] L. Calvet and A. Fisher, Multifractality in Asset Re turns: Theory and Evidence, Rev. Econ. Stat. 84, 381 (2002).
  • [73] B.B. Mandelbrot, The variation ofcertain speculative prices, J. Business 36, 394 (1963).
  • [74] T. Di Matteo, T. Aste, and M.M. Dacorogna, Scaling Behaviors in Differently Developed Markets, Physica A 324,183 (2003).
  • [75] T. Di Matteo, T. Aste, and M.M. Dacorogna, Longterm Memories of Developed and Emerging Markets: Using the Scaling Analysis to Characterize their Stage of Development, J. Banldng & Finance 29, 827 (2005).
  • [76] T. Di Matteo, Multi-scaling in Finance, Quant. Finance 7, 21 (2007).
  • [77] J. Barunik and L. Kristoufek, On Hurst exponent estimation under heavy-tailed distributions, Physica A 39, 3844 (2010).
  • [78] G.P. Massara, T. Di Matteo, and T. Aste, NetWork Filteringfor Big Data: Triangulated Maximally Filtered Graph, J. Complex Networks 5(2), 161 (2016).
  • [79] J. Ludescher, M.I. Bogachev, J.W. Kantelhardt, A.Y. Schumann, and A. Bunde, Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series, Physica A 390, 2480 (2011).
  • [80] Ł. Czarnecki and D. Grech, Multifractal dynamics of stock market, Acta Phys. Pol. A117, 623 (2010).
  • [81] N. Vandewalle and M. Ausloos, Fractals in Finance, in Fractals and Beyond. Complexity in the Sciences, M. M. Novak (Ed.) (World Scient., Singapore, 1998) p. 355.
  • [82] K. Ivanova and M. Ausloos, Low q-moment multifractal analysis of Gold price, Dow Jones Industrial Average and BGL-USD exchange rate, Eur. Phys. J. B 8, 665 (1999); Err. 12, 613 (1999).
  • [83] M. Ausloos and K. Ivanova, Multi-fractal nature of stock exchange prices, Comp. Phys. Commun. 147 (2002) 582-585
  • [84] Th. Lux and M. Ausloos, Market Fluctuations F. Scaling, Multi-scaling and their Possible Origins, in The Science of Disasters: Scaling Laws Governing We- ather, Body, Stock-Market Dynamics, A. Bundę, J. Kropp and H.-J. Schellnhuber, Eds. (Springer Ver- lag, Berlin, 2001) pp.377.
  • [85] J. Masoliver, M. Montero, and G.H. Weiss, Continuous-time random-walk model for financial distributions, Phys. Rev. E 67, 021112 (2003).
  • [86] J. Masoliver, M. Montero, J. Perelló, and G.H. Weiss, The continuous time random walk formalism in financial markets, J. Econ. Behav. & Org. 61, 577 (2006).
  • [87] E. Scalas, The application of continuous-time random walks in finance and economics, Physica A 362, 225 (2006).
  • [88] R. Kutner and J. Masoliver, The continuous time random walk, still trendy: fifty-year history, state of art and outlook Eur. Phys. J. B 90, 50 (2017).
  • [89] R. Kutner, Stock market context ofthe Levy walks with varying velocity, Physica A 314, 786 (2002).
  • [90] R. Kutner and F. Świtała, Stochastic simulations of time series within Weierstrass-Mandelbrot walks, Quant. Fin. 3, 201 (2003).
  • [91] P. Oświęcimka, J. Kwapień, and St. Drożdż, Multi-fractality in the stock market: price increments versus waiting times, Physica A 347, 626 (2005).
  • [92] Z. Eisler and J. Kertesz, Size matters: some stylized facts of the stock market revisited, Eur. Phys. J. B 51, 145 (2006).
  • [93] Z. Eisler and J. Kertesz, Scaling theory of temporal correlations and size-dependent fluctuations in the traded value of stocks, Phys. Rev. E 73, 046109 (2006).
  • [94] J. Perelló, J. Masoliver, A. Kasprzak, and R. Kutner, Model for interevent times with long tails and multi-fractality in human Communications: An application to financial trading, Phys. Rev. E 78, 036108 (2008).
  • [95] T. Gubiec and R. Kutner, Backward jump continuous-time random walk: An application to market trading, Phys.Rev. E 82, 046119 (2010).
  • [96] J. Kwapień and St. Drożdż, Physical approach to complex systems, Physics Reports 515,115 (2012).
  • [97] M. Denys, T. Gubiec, R. Kutner, M. Jagielski, and H.E. Stanley, Universality of market superstatistics, Phys. Rev. E 94, 042305 (2016).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-976c27a7-eaf2-464a-89bb-7da3b280f8ac
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.