PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Algorithm of carbon footprint calculation for municipal wastewater treatment plant. Part one

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Algorytm obliczania śladu węglowego miejskiej oczyszczalni ścieków. Część pierwsza
Języki publikacji
EN
Abstrakty
EN
In the forthcoming years, urban wastewater management utilities will be required by the European Union to perform CF calculations in accordance with the Corporate Sustainability Reporting Directive (CSRD) and European Sustainability Reporting Standards (ESRS) indicators. Yet, no standardized approach that expressly addresses the rules for WWTPs in respect to GHG emissions, giving the water bodies a clear instruction to calculate their CF is given. This paper provides an in-depth examination of the present approaches for calculating GHG emissions. An algorithm for calculating the carbon footprint of a wastewater treatment facility is developed and described in detail by the authors. Furthermore, the research evaluates the extent to which facility data is complete and suggests remedies to any detected information gaps. A data enhancement strategy is also offered. The primary goal of this research is to bridge a knowledge gap in the understanding of the carbon footprint associated with WWTPs and their organisational framework. The analysis also included a thorough investigation into the significance and sources of GHG Protocol Scope 1 (part one article), 2, and 3 emissions (part two article) within the larger framework of carbon footprint, particularly in relation to the legislative goals of CSRD reporting with its upcoming obligations imposed on waterworks organizations.
PL
W nadchodzących latach Unia Europejska będzie wymagać od miejskich zakładów oczyszczania ścieków wykonywania obliczeń śladu węglowego (CF) zgodnie z Dyrektywą w sprawie sprawozdawczości dotyczącej zrównoważonego rozwoju przedsiębiorstw (CSRD) i wskaźnikami Europejskich Standardów Sprawozdawczości dotyczącymi zrównoważonego Rozwoju (ESRS). Nie istnieje jednak żadne ustandaryzowane podejście, które wyraźnie odnosiłoby się do zasad dotyczących oczyszczalni ścieków w odniesieniu do emisji gazów cieplarnianych (GHG), dając organom wodnym jasne instrukcje dotyczące obliczania ich CF. Niniejszy artykuł zawiera dogłębną analizę obecnych podejść do obliczania emisji GHG. Algorytm obliczania śladu węglowego miejskiej oczyszczalni ścieków został opracowany i szczegółowo opisany przez autorów. Ponadto, w analizie oceniają zakres, w jakim dane dotyczące oczyszczalni ścieków są kompletne i sugerują środki zaradcze dla wszelkich wykrytych luk informacyjnych. Zaproponowano również strategię ulepszania danych. Głównym celem tego badania jest wypełnienie luki w wiedzy na temat śladu węglowego związanego z oczyszczalniami ścieków i ich ramami organizacyjnymi. Analiza obejmowała również dokładne zbadanie znaczenia i źródeł emisji z wg podziału na zakresy GHG Protocol 1 (część pierwsza), 2 i 3 (część druga) w szerszych ramach śladu węglowego, szczególnie w odniesieniu do celów legislacyjnych raportowania CSRD z nadchodzącymi obowiązkami nałożonymi na przedsiębiorstwa wodociągowe.
Rocznik
Tom
Strony
30--42
Opis fizyczny
Bibliogr. 62 poz., rys., tab.
Twórcy
  • Bureau Veritas Polska Sp. z o.o. ul. Migdałowa 4, 02-796 Warszawa
  • Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
  • Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
Bibliografia
  • [1] Al Aboobakar, A., Cartmell, E., Stephenson, T., Jones, M., Vale, P., & Dotro, G. (2013). Nitrous oxide emissions and dissolved oxygen profiling in a full-stale nitrifying activated sludge treatment plant. Water Research, 47(2), 524-534. https://doi.org/10.1016/j.watres.2012.10.004.
  • [2] Ahn, J. H., Kim, S., Park, H., Rahm, B., Pagilla, K., & Chandran, K. (2010). N20 Emissions from Activated Sludge Processes, 2008-2009: Results of a National Monitoring Survey in the United States. Environmental Science & Technology, 44(12), 4505-4511. https://doi.org/10.1021/es903845y.
  • [3] Asadi, M., & McPhedran, K. (2021). Estimation of greenhouse gas and odour emissions from a cold region municipal biological nutrient removal wastewater treatment plant. Journal of Environmental Management, 281, 111864. https://doi.org/10.1016/j.jenvman.2020.111864.
  • [4] Association of Issuing Bodies. (2023). European Residual Mixes Results of the calculation of Residual Mixes for the calendar year 2022 Version 1.0. Retrieved from https://www.aib-net.org/sites/default/files/assets/facts/residual-mix/2022/AIB_2022_Residual_Mix_Results_.pdf.
  • [5] Auguet, Pijuan, Borrego, & Gutierrez. (2016). Control of sulfide and methane production in anaerobic sewer systems by means of Downstream Nitrite Dosage. Science of the Total Environment, 550. https://doi.org/10.1016/j.scitotenv.2016.01.130.
  • [6] Bashir, M. F., M. A., B., Hussain, H. I., Shahbaz, M., Koca, K., & Shahzadi, I. (2022). Evaluating environmental commitments to COP21 and the role of economic complexity, renewable energy, financial development, urbanization, and energy innovation: Empirical evidence from the RCEP countries. Renewable Energy, 184, 541-550. https://doi.org/10.1016/j.renene.2021.11.102.
  • [7] Bashir, M. F., Pan, Y., Shahbaz, M., & Ghosh, S. (2023). How energy transition and environmental innovation ensure environmental sustainability? Contextual evidence from Top-10 manufacturing countries. Renewable Energy, 204, 697-709. https://doi.org/10.1016/j.renene.2023.01.049.
  • [8] Bellandi, G., Porro, J., Senesi, E., Caretti, C., Caffaz, S., Weijers, S., Gori, R. (2017). Multi-point monitoring of nitrous oxide emissions in three full-scale conventional activated sludge tanks in Europe. Water Science and Technology, 77(4), 880-890. https://doi.org/10.2166/wst.2017.560.
  • [9] Bhatia, M., & Goyal, D. (2013). Analyzing remediation potential of wastewater through wetland plants: A review. Environmental Progress & Sustainable Energy, 33(1), 9-27. https://doi.org/10.1002/ep.11822.
  • [10] Cakir, F., & Stenstrom, M. (2005). Greenhouse gas production: A comparison between aerobic and anaerobic wastewater treatment technology. Water Research, 39(17), 4197-4203. https://doi.org/10.1016/j.watres.2005.07.042.
  • [11] California Air Resources Board's Local Government Operations Protocol. (2010). Retrieved from https://ww2.arb.ca.gov/local-government-operations-protocol-greenhouse-gas-assessments.
  • [12] Clean Development Mechanism Treatment of wastewater methodology. (2014). Retrieved from https://cdm.unfccc.int/methodologies/DB/PPK-HX1MHNHF6DYVE6SED2GBPFU92Y2.
  • [13] Climatiq Data Base. (n.d.). Retrieved July 17, 2023, from https://www.climatiq.io/.
  • [14] Commonwealth of Australia, Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education. (2023). Australian National Greenhouse Accounts National Greenhouse Accounts Factors.
  • [15] Commonwealth of Australia, Department of Industry, Innovation, Climate Change, Science, Research and Tertiary Education. (2023). Australian National Greenhouse and Energy Reporting System Measurement Technical Guidelines for the Estimation of Greenhouse Gas Emissions by Facilities in Australia.
  • [16] Daelman, M. R., van Voorthuizen, E. M., van Dongen, U. G., Volcke, E. I., & van Loosdrecht, M. C. (2012). Methane emission during municipal wastewater treatment. Water Research, 46(11), 3657-3670. https://doi.org/10.1016/j.watres.2012.04.024.
  • [17] Daelman, M. R., van Voorthuizen, E. M., van Dongen, U. G., Volcke, E. I., & van Loosdrecht, M. C. (2015). Seasonal and diurnal variability of N20 emissions from a full-scale municipal wastewater treatment plant. Science of the Total Environment, 536, 1-11. https://doi.org/10.1016/j.scitotenv.2015.06.122.
  • [18] Delre, A., Mønster, J., & Scheutz, C. (2017). Greenhouse gas emission quantification from wastewater treatment plants, using a tracer gas dispersion method. Science of the Total Environment, 605-606, 258-268. https://doi.org/10.1016/j.scitotenv.2017.06.177.
  • [19] Delre, A., ten Hoeve, M., & Scheutz, C. (2019). Site-specific carbon footprints of Scandinavian wastewater treatment plants, using the life cycle assessment approach. Journal of Cleaner Production, 211, 1001-1014. https://doi.org/10.1016/j.jclepro.2018.11.200.
  • [20] ESRS November 2022 version. (2022). Retrieved July 17, 2023, from https://www.efrag.org/lab6.
  • [21] EU Directive 2014/95/EU of the European Parliament and of the Council of 22 October 2014. (2014). Retrieved July 17, 2023, from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32014L0095.
  • [22] EU Directive 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources. (2018). Retrieved July 17, 2023, from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A02018L2001-20220607.
  • [23] EU Directive 2022/2464 of the European Parliament and of the Council of 14 December 2022. (2022). Retrieved July 17, 2023, from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32022E2464.
  • [24] Foley, J., de Haas, D., Hartley, K., & Lant, P. (2010). Comprehensive life cycle inventories of alternative wastewater treatment systems. Water Research, 44(5), 1654-1666. https://doi.org/10.1016/j.watres.2009.11.031.
  • [25] Forster-Carneiro, T., Pérez, M., & Romero, L. (2018). Thermophilic anaerobic digestion of source-sorted organic fraction of municipal solid waste. Bioresource Technology, 99(15), 6763-6770. https://doi.org/10.1016/j.biortech.2008.01.052.
  • [26] González, D., Colón, J., Sánchez, A., & Gabriel, D. (2022). Multipoint characterization of the emission of odour, volatile organic compounds and greenhouse gases from a full-scale membrane-based municipal WWTP. Journal of Environmental Management, 313, 115002. https://doi.org/10.1016/j.jenvman.2022.115002.
  • [27] Gruber, W., von Känel, L., Vogt, L., Luck, M., Biolley, L., Feller, K., Joss, A. (2021). Estimation of countrywide N20 emissions from wastewater treatment in Switzerland using long-term monitoring data. Water Research X, 13, 100122. https://doi.org/10.1016/j.wroa.2021.100122.
  • [28] Guo, H., Liu, S., Wang, Y., Wang, Y., Hou, J., Zhu, T., & Liu, Y. (2023). Reduced sulfide and methane in rising main sewer via calcium peroxide dosing: Insights from microbial physiological characteristics, metabolisms and community traits. Journal of Hazardous Materials, 451, 131138. https://doi.org/10.1016/j.jhazmat.2023.131138.
  • [29] Haas, & Hartley. (2004). Greenhouse gas emissions from BNR plant - Do we have the right focus? Proceedings: Sewage Management.
  • [30] Intergovernmental Panel on Climate Change. (2019). 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse GUS Inventories: Guidelines for wastewater treatment and discharge (Vol. 5, Chapter 6). Retrieved from https://www.ipcc-nggip.iges.or.jp/public/2019rf/index.html.
  • [31] Jin, P., Gu, Y., Shi, X., & Yang, W. (2019). Non-negligible greenhouse gases from urban sewer system. Biotechnology for Biofuels, 12(1). https://doi.org/10.1186/s13068-019-1441-8.
  • [32] Khabiri, B., Ferdowsi, M., Buelna, G., Jones, J. P., & Heitz, M. (2021). Bioelimination of low methane concentrations emitted from wastewater treatment plants: a review. Critical Reviews in Biotechnology, 42(3), 450-467. https://doi.org/10.1080/07388551.2021.1940830.
  • [33] Li, L., Wang, X., Miao, J., Abulimiti, A., Jing, X., & Ren, N. (2022). Carbon neutrality of wastewater treatment - A systematic concept beyond the plant boundary. Environmental Science and Ecotechnology, 11, 100180. https://doi.org/10.1016/j.ese.2022.100180.
  • [34] Liao, X., Tian, Y., Gan, Y., & Ji, J. (2020). Quantifying urban wastewater treatment sector's greenhouse gas emissions using a hybrid life cycle analysis method - An application on Shenzhen city in China. Science of the Total Environment, 745, 141176. https://doi.org/10.1016/j.scitotenv.2020.141176.
  • [35] Lopes, T. A., Queiroz, L. M., Torres, E. A., & Kiperstok, A. (2020). Low complexity wastewater treatment process in developing countries: A LCA approach to evaluate environmental gains. Science of the Total Environment, 7201, 137593. https://doi.org/10.1016/j.scitotenv.2020.137593.
  • [36] Lorenzo-Toja, Y., Alfonsin, C., Amores, M. J., Aldea, X., Marin, D., Moreira, M. T., & Feijoo, G. (2016). Beyond the conventional life cycle inventory in wastewater treatment plants. Science of the Total Environment, 553, 71-82. https://doi.org/10.1016/j.scitotenv.2016.02.073.
  • [37] Ma, B., Lin, S., Bashir, M. F., Sun, H., & Zafar, M. (2023). Revisiting the role of firm-level carbon disclosure in sustainable development goals: Research agenda and policy implications. Gondwana Research, 117, 230-242. https://doi.org/10.1016/j.gr.2023.02.002.
  • [38] MA, B., Zhang, Y., Qin, Y., & Bashir, M. F. (2021). Optimal insurance contract design with "No-claim Bonus and Coverage Upper Bound" under moral hazard. Expert Systems With Applications, 178, 115050. https://doi.org/10.1016/j.eswa.2021.115050.
  • [39] Maktabifard, M., Awaitey, A., Merta, E., Haimi, H., Zaborowska, E., Mikola, A., & Mąkinia, J. (2022). Comprehensive evaluation of the carbon footprint components of wastewater treatment plants located in the Baltic Sea region. Science of the Total Environment, 806, 150436. https://doi.org/10.1016/j.scitotenv.2021.150436.
  • [40] Maktabifard, M., Blomberg, K., Zaborowska, E., Mikola, A., & Mąkinia, J. (2022). Model-based identification of the dominant N20 emission pathway in a full-scale activated sludge system. Journal of Cleaner Production, 336, 130347. https://doi.org/10.1016/j.jclepro.2021.130347.
  • [41] Piao, W., Kim, Y., Kim, H., Kim, M., & Kim, C. (2016). Life cycle assessment and economic efficiency analysis of integrated management of wastewater treatment plants. Journal of Cleaner Production, 113, 325-337. https://doi.org/10.1016/j.jclepro.2015.11.012.
  • [42] Rahman, W. U., Khan, M. D., Khan, M. Z., & Haider, G. (2018). Anaerobic biodegradation of benzene-laden wastewater under mesophilic environment and simultaneous recovery of methane-rich biogas. Journal of Environmental Chemical Engineering, 6(2), 2957-2964. https://doi.org/10.1016/j.jece.2018.04.038.
  • [43] Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 Establishing the Framework for Achieving Climate Neutrality and Amending Regulations (EC) No 401/2009 and (EU) 2018/1999. (2021). Retrieved July 17, 2023, from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32021R1119.
  • [44] Sadiq, M., Wen, F., Bashir, M. F., & Amin, A. (2022). Does nuclear energy consumption contribute to human development? Modeling the effects of public debt and trade globalization in an OECD heterogeneous panel. Journal of Cleaner Production, 375, 133965. https://doi.org/10.1016/j.jclepro.2022.133965.
  • [45] Shi, X., Liu, W., Xu, D., Holt, Y., Ren, B., Jin, X., Jin, P. (2023). Metagenomics analysis of ecosystem integrating methane and sulfide generation in urban sewer systems. Journal of Cleaner Production, 382, 135372. https://doi.org/10.1016/j.jclepro.2022 .135372.
  • [46] Solis, B., Guisasola, A., Pijuan, M., Corominas, L., & Baeza, J. A. (2022). Systematic calibration of N20 emissions from a full-scale WWTP including a tracer test and a global sensitivity approach. Chemical Engineering Journal, 435, 134733. https://doi.org/10.1016/j.cej.2022.134733.
  • [47] Soto-Rios, P. C., Nagabhatla, N., & Acevedo-Juárez, B. (2023). Circulatory Pathways in the Water and Wastewater Sector in the Latin American Region. Water, 15(6), 1092. https://doi.org/10.3390/w15061092.
  • [48] U.S. Community Protocol for Accounting and Reporting of Greenhouse Gas Emissions by International Council for Local Environmental Initiatives - Local Governments for Sustainability USA. (2013). Retrieved from https://icleiusa.org/us-community-protocol/.
  • [49] Valkova, T., Parravicini, V., Saracevic, E., Tauber, J., Svardal, K., & Krampe, J. (2021). A method to estimate the direct nitrous oxide emissions of municipal wastewater treatment plants based on the degree of nitrogen removal. Journal of Environmental Management, 279,111563. https://doi.org/10.1016/j.jenvman.2020.111563.
  • [50] Vasilaki, V., Massara, T., Stanchev, P., Fatone, F., & Katsou, E. (2019). A decade of nitrous oxide (N20) monitoring in full-scale wastewater treatment processes: A critical review. Water Research, 161, 392-412. https://doi.org/10.1016/j.watres.2019.04.022.
  • [51] Vidal, N., Bañares-Alcántara, R., Rodriguez-Roda, 1., & Poch, M. (2002). Design of Wastewater Treatment Plants Using a Conceptual Design Methodology. Industrial & Engineering Chemistry Research, 41(20), 4993-5005. https://doi.org/10.1021/ie010652b.
  • [52] Willis, Zhiguo, & Sudhir. (2016). Wastewater GHG Accounting Protocols as Compared to the State of GHG Science (Vol. 88(8), 704-714). Water Environment Research. Retrieved from https://www.jstor.org/stable/26662377.
  • [53] WRI, WBCSD. (2014). World Resources Institute and World Business Council for Sustainable Development, GHG Protocol Scope 2 Guidance. An amendment to the GHG Protocol Corporate Standard.
  • [54] WRI, WBCSD. (2014). World Resources Institute and World Business Council for Sustainable Development, Greenhouse Gas Protocol. A Corporate Accounting and Reporting Standard REVISED EDITION.
  • [55] WRI, WBCSD. (2014). World Resources Institute and World Business Council for Sustainable Development, Greenhouse Gas Protocol. Corporate Value Chain (Scope 3) Accounting and Reporting Standard. Supplement to the GHG Protocol Corporate Accounting and Reporting Standard.
  • [56] Wu, Z., Duan, H., Li, K., & Ye, L. (2022). A comprehensive carbon footprint analysis of different wastewater treatment plant configurations. Environmental Research, 214, 113818. https://doi.org/10.1016/j.envres.2022.113818.
  • [57] Yang, M., Peng, M., Wu, D., Feng, H., Wang, Y., Lv, Y., Yang, K. (2023). Greenhouse gas emissions from wastewater treatment plants in China: Historical emissions and future mitigation potentials. Resources, Conservation and Recycling, 190, 106794. https://doi.org/10.1016/j.resconrec.2022.106794.
  • [58] Yoshida, H., Monster, J., & Scheutz, C. (2014). Plant-integrated measurement of greenhouse gas emissions from a municipal wastewater treatment plant. Water Research, 61, 108-118. https://doi.org/10.1016/j.watres.2014.05.014.
  • [59] Yoshida, H., Tokumoto, H., Ishii, K., & Ishii, R. (2009). Efficient, high-speed methane fermentation for sewage sludge using subcritical water hydrolysis as pretreatment. Bioresource Technology, 100(12), 2933-2939. https://doi.org/10.1016/j.biortech.2009.01.047.
  • [60] Zhao, Z., Yang, J., Zhang, Z., Wang, S., Zhang, Z., & Lu, J. (2021). New method for efficient control of hydrogen sulfide and methane in gravity sewers: Combination of NaOH and Nitrite. Frontiers of Environmental Science & Engineering, 16(6). https://doi.org/10.1007/s11783-021-1509-0.
  • [61] Zhou, W., Xiang, S., Shi, Y., Xu, X., Lu, H., Ou, W., & Yang, J. (2022). Invasive Water Hyacinth (Eichhornia crassipes) Increases Methane Emissions from a Subtropical Lake in the Yangtze River in China. Diversity, 14(12), 1036. https://doi.org/10.3390/d14121036.
  • [62] Zhu, B., Gikas, P., Zhang, R., Lord, J., Jenkins, B., & Li, X. (2009). Characteristics and biogas production potential of municipal solid wastes pretreated with a rotary drum reactor. Bioresource Technology, 100(3), 1122-1129. https://doi.org/10.1016/j.biortech.2008.08.024 bile," Waste Manag., 108: 172-182, doi: 10.1016/j.wasman.2020.04.013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-976b81bd-d6fd-4c69-aa40-f96ec92fce1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.