PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Anisotropy on the ductile-to-brittle transition for rock in process of drilling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Anisotropy is an inherent property of rocks. It refers to the different response of the rock properties in each direction. Understanding the anisotropy characteristics of rock failure by drilling has practical applications in improving drilling efficiency, especially for engineering applications. In this paper, a criterion is established to clarify the ductile-to-brittle transition in the drilling process of rock. Moreover, a new anisotropy index has been proposed to evaluate the effect of anisotropy on the critical state of the ductile-to-brittle transition. The digital drilling tests are conducted on six types of rock to study the drilling mechanical performance in the X, Y, and Z directions. The anisotropy characteristics of drilling parameters and mechanical specific energy (MSE) are analysed at the critical state of ductile–brittle failure. The results show that the critical state of ductile–brittle failure is manifested as an inflection point of the depth of cut. The evolution of MSE is fitted as two linear functions, which corresponds to the two stages. The order of anisotropy in MSE is obtained as: gneiss > slate > red sandstone > granite > argillaceous sandstone > sandstone. The anisotropy in the uniaxial compressive strength and MSE for different rock types has the same sequences. The advantages of the proposed method in determining rock anisotropy are illustrated.
Czasopismo
Rocznik
Strony
2107--2124
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi′an University of Technology, Xi′an 710048, China
autor
  • State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi′an University of Technology, Xi′an 710048, China
autor
  • CCCC First Highway Consultants CO.LTD, Xi′an 710000, China
autor
  • State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi′an University of Technology, Xi′an 710048, China
autor
  • CCCC First Highway Consultants CO.LTD, Xi′an 710000, China
autor
  • CCCC First Highway Consultants CO.LTD, Xi′an 710000, China
Bibliografia
  • 1. Atkins AG (2003) Modelling metal cutting using modern ductile fracture mechanics: quantitative explanations for some longstanding problems. Int J Mech Sci 45(2):373–396
  • 2. Bifano TG, Fawcett SC (1991) Specific grinding energy as an in-process control variable for ductile-regime grinding. Precis Eng 13:256–262
  • 3. Bifano TG, Dow TA, Scattergood RO (1991) Ductile-regime grinding: a new technology for machining brittle materials. Manuf Sci E-T ASME 113(2):184–189
  • 4. Brown ET, Green SJ, Sinha KP (1981) The influence of rock anisotropy on hole deviation in rotary drilling—a review. Int J Rock Mech Min Sci Geomech Abstr 18:387–401
  • 5. Dai XW, Huang ZW, Shi HZ, Wu XG, Xiong C (2012) Cutting force as an index to identify the ductile-brittle failure modes in rock cutting. Int J Rock Mech Min 146:104834
  • 6. Detournay E, Defourny P (1992) A phenomenological model for the drilling action of drag bits. Int J Rock Mech Min Sci 29:13–23
  • 7. Detournay E, Richard T, Shepherd M (2008) Drilling response of drag bits: theory and experiment. Int J Rock Mech Min Sci 45:1347–1360
  • 8. Franca LFP (2010) Drilling action of roller-cone bits: modeling and experimental validation. J Energy Resour Technol 132:1–9
  • 9. Gerbaud L, Menand S, Sellami H (2006) PDC Bits: all comes from the cutter rock interaction. Proc IADC/SPE Drill Conf Held Miami, Florida, USA 2:21–23
  • 10. Han TC, Gurevich B, Fu LY, Qi QM, Wei JX, Chen XY (2020) Combined effects of pressure and water saturation on the seismic anisotropy in artificial porous sandstone with aligned fractures. J Geophys Res-Sol EA 125(1):e2019JB019091
  • 11. Hareland GA (2010) Drilling rate model for roller cone bits and its application. In: Proceedings of the CPS/SPE International Oil & Gas Conference and Exhibition in China Held in Beijing, China, pp. 8–10.
  • 12. He XQ, Xu CS (2015) Discrete element modelling of rock cutting: from ductile to brittle transition. Int J Numer Anal Met 39(12):1331–1351
  • 13. He XQ, Xu CS (2016) Specific energy as an index to identify the critical failure mode transition depth in rock cutting. Rock Mech Rock Eng 49(4):1461–1478
  • 14. He XQ, Xu CS, Peng K, Huang G (2017) On the critical failure mode transition depth for rock cutting with different back rake angles. Tunn Undergr Sp Tech 63:95–105
  • 15. He MM, Huang B, Li N, Zhu CH, Chen YS (2018) Energy dissipation-based method for fatigue life prediction of rock salt. Rock Mech Rock Eng 51:1447–1455
  • 16. He MM, Li N, Zhang ZQ, Yao X, Chen YS, Zhu CH (2019) An empirical method for determining the mechanical properties of jointed rock mass using drilling energy. Int J Rock Mech Min 116:64–74
  • 17. He MM, Li N, Zhu J, Chen YS (2020) Advanced prediction for field strength parameters of rock using drilling operational data from impregnated diamond bit. J Petrol Sci Eng 187:106847
  • 18. He MM, Zhou JP, Li PF, Yang BB, Wang HY, Wang J (2022) Novel approach to predict the spatial distributions of hydraulic conductivity of rock mass using convolutional neural networks. Q J Eng Geol Hydrogeol. https://doi.org/10.1144/qjegh2021-169
  • 19. Hornby BE, Schwartz LM, Hudson JA (1994) Anisotropic effective-medium modeling of the elastic properties of shales. Geophysics 59:1570–1583
  • 20. Huang SL, Wang ZW (1997) The mechanics of diamond core drilling of rocks. Int J Rock Mech Min Sci 34:612
  • 21. Huang H, Lecampion B, Detournay E (2013) Discrete element modeling of tool-rock interaction I: rock cutting. Int J Numer Anal Met 37(13):1913–1929
  • 22. Ismael MA, Imam HF, El-Shayeb Y (2014) A simplified approach to directly consider intact rock anisotropy in Hoek-Brown failure criterion. J Rock Mech Geotech 6(5):486–492
  • 23. Kalantari S, Hashemolhosseini H, Baghbanan A (2018) Estimating rock strength parameters using drilling data. Int J Rock Mech Min Sci 104:45–52
  • 24. Kuila U, Dewhurst DN, Siggins AF, Raven MD (2011) Stress anisotropy and velocity anisotropy in low porosity shale. Tectonophysics 503:34–44
  • 25. Liu WJ, Zhu XH, Jing J (2018) The analysis of ductile-brittle failure mode transition in rock cutting. J Petrol Sci Eng 163:311–319
  • 26. Merchant ME (1945) Basic mechanics of the metal cutting process. J Appl Phys 66:168–175
  • 27. Nakajima I, Kinoshita S (1979) Theoretical studies on cutting force of rock fracture mechanism in rock cutting. J Min Metall Inst Jpn 95:49–55
  • 28. Nasseri MH, Mohanty B (2008) Fracture toughness anisotropy in granitic rocks. Int J Rock Mech Min 45:167–193
  • 29. Nicodeme P (1997) Transition between ductile and brittle mode in rock cutting. Rapport de stage d'option scientififique. Ecole Polytechnique, Paris.
  • 30. Nishimatsu Y (1972) The mechanics of rock cutting. Int J Rock Mech Min Sci 9:261–270
  • 31. Pessier RC, Fear MJ (1992) Quantifying common drilling problems with mechanical specific energy and a bit-specific coefficient of sliding friction. In: Proceedings of the 67th Annual Technical Conference and Exposition of the SPE. Washington, DC, vols. 4–7, pp. 373–387.
  • 32. Ramamurthy T (1993) Strength and modulus responses of anisotropic rocks. Comprehensive rock engineering. Oxford: Pergamon Press 313–29.
  • 33. Richard T, Dagrain F, Poyol E, Detournay E (2012) Rock strength determination from scratch tests. Eng Geol 147:91–100
  • 34. Richard T, Detournay E, Drescher A, Nicodeme P, Fourmaintraux D (1998) The scratch test as a means to measure strength of sedimentary rocks. Paper presented at the SPE/ISRM Rock Mechanics in Petroleum Engineering, Trondheim. pp. 15–22.
  • 35. Richard T (1999) Determination of rock strength from cutting tests. Master Thesis, University of Minnesota.
  • 36. Roxborough FF, Philips HR (1975) Rock excavation by disc cutter. Int J Rock Mech Min Sci 12(12):361–376
  • 37. Saroglou H, Tsiambaos G (2008) A modified Hoek-Brown failure criterion for anisotropic intact rock. Int J Rock Mech Min 45(2):223–234
  • 38. Saroglou C, Qi SW, Guo S, Wu F (2019) ARMR, a new classification system for the rating of anisotropic rock masses. B Eng Geol Environ 78(5):3611–3626
  • 39. Schunnesson H (1996) RQD predictions based on drill performance parameters. Tunn Undergr Sp Tech 11:345–351
  • 40. Sun HF, Vega S, Tao G (2017) Analysis of heterogeneity and permeability anisotropy in carbonate rock samples using digital rock physics. J Petrol Sci Eng 156:419–429
  • 41. Swenson DV, Wesenberg DL, Jones AK (1981) Analytical and experimental investigations of rock cutting using polycrystalline diamond compact drag cutters. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
  • 42. Thomsen L (1986) Weak elastic anisotropy. Geophysics 51:1954–1966
  • 43. Wang ZJ (2002) Seismic anisotropy in sedimentary rocks, part 2: laboratory data. Geophysics 67(5):1423–1440
  • 44. Wang Q, Gao HK, Jiang B (2018a) Relationship model for the drilling parameters from a digital drilling rig versus the rock mechanical parameters and its application. Arab J Geosci 11:357
  • 45. Wang Q, Gao S, Jiang B, Li S, He M, Gao H, Qin Q (2018b) Rock-cutting mechanics model and its application based on slip-line theory. Int J GeoMech 18(5):04018025
  • 46. Wang Q, Qin Q, Jiang B, Li SC (2018c) Upper bound analytic mechanics model for rock cutting and its application in field testing. Tunn Undergr Space Technol 73:287–294
  • 47. Wang Q, Gao HK, Yu HC, Jiang B, Liu BH (2019) Method for measuring rock mass characteristics and evaluating the grouting-reinforced effect based on digital drilling. Rock Mech Rock Eng 52:841–851
  • 48. Wang Q, Gao HK, Jiang ZH, Li SC, Jiang B (2020) Development and application of a surrounding rock digital drilling test system of underground engineering. Chin J Rock Mech Eng 39:301–310
  • 49. Wang HT, He MM, Zhang ZQ, Zhu J (2022) Determination of the constant mi in the Hoek-Brown criterion of rock based on drilling parameters. Int J Min Sci Technol 32(4):747–759
  • 50. Wojtanowicz AK, Kuru E (1993) Mathematical modeling of PDC bit drilling process based on a single-cutter mechanics. J Energy Resour Technol 115:247–256
  • 51. Yan BQ, Wang PT, Ren FH, Guo QF, Cai MF (2020) A review of mechanical properties and constitutive theory of rock mass anisotropy. Arab J Geosci 13(12):1
  • 52. Zhang ZB, Wang EY, Chen D, Li XL, Li N (2016) The observation of AE events under uniaxial compression and the quantitative relationship between the anisotropy index and the main failure plane. J Appl Geophys 134:183–190
  • 53. Zhou YN, Lin JS (2013) On the critical failure mode transition depth for rock cutting. Int J Rock Mech Min 62:131–137
  • 54. Zhou YN, Lin JS (2014) Modeling the ductile-brittle failure mode transition in rock cutting. Eng Fract Mech 127:135–147
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9761b000-0a24-46a7-a669-f2b4479fa872
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.