PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Innovative 3D Measuring Technique for Identifying Geometrical Imperfections and Wear in Small Marine Stern Tube Liners

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Increasingly stringent requirements for the durability and reliability of ship components and new standards for environmental protection have resulted in the use of increasingly sophisticated technologies in the shipbuilding industry. The components of a ship’s propulsion system have been meticulously analysed and improved over several decades. The durability and reliability of the sliding bearings for a ship’s propeller shaft depend on the precision of manufacturing and assembly of large elements, and virtually the same methods have been used to measure diameters and internal bore shape analysis for decades. This paper proposes a method of assessing the technical condition of the ship’s propeller shaft bearing bushes, which enables precise knowledge about possible defects to be obtained at the stage of machining or assembly; this approach also makes it possible to assess the degree of wear of the bearing bush. The essence of this method is contact scanning of the surface geometry, thanks to which it is possible to build a three-dimensional model of a specific element and then to assess its technical condition. The proposed method may be especially important for modern solutions such as sliding bearings with double slope geometry.
Rocznik
Tom
Strony
129--136
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Poland
  • Gdansk University of Technology, Faculty of Mechanical Engineering and Ship Technology, Poland
Bibliografia
  • 1 Etkin D S. Worldwide analysis of in-port vessel operational lubricant discharges and leakages. In 33rd AMOP Technical Seminar on Environmental Contamination and Response, 2010, 1–25.
  • 2 National Pollutant Discharge Elimination System (NPDES) Vessel General Permit (VGP) and Small Vessel General Permit (sVGP), vol. 502, November. US Environmental Protection Agency (EPA), 2013.
  • 3 Qin H, Zhou X, Zhao X, Xing J, Yan Z. A new rubber/UHMWPE alloy for water-lubricated stern bearings. Wear 328–329, 257–261, 2015. https://doi.org/10.1016/j.wear.2015.02.016.
  • 4 Prehn R, Haupert F, Friedrich K. Sliding wear performance of polymer composites under abrasive and water lubricated conditions for pump applications. Wear 259(1–6), 693–696, 2005. https://doi.org/10.1016/j.wear.2005.02.054.
  • 5 Zero oil means zero enviromental impact. Nav Archit 5, 32–36, 2012.
  • 6 Borras F X, van den Nieuwendijk R, Ramesh V, de Rooij M B, Schipper D J. Stern tube seals operation: A practical approach. Adv Mech Eng 13(2), 1–14, 2021. https://doi.org/10.1177/1687814021994404.
  • 7 Borras F X, de Rooij M B, Schipper D J. Rheological and wetting properties of environmentally accepTable lubricants (EALs) for application in stern tube seals. Lubricants 6(4), 2018. https://doi.org/10.3390/lubricants6040100.
  • 8 Frost J, Litwin W. Comparative wear test of journal sliding bearings with sintered bronze and Babbitt alloy bushes lubricated by environmentally acceptable/adapted lubricants (EAL). Tribol Trans 7–8, 2022, https://dx.doi.org/10.1080/10402004.2022.2155281.
  • 9 American Bureau of Shipping. Guidance notes on propulsion shafting alignment. ABS Classif. Soc. Rules, September, p. 156, 2019.
  • 10 Belioka M P, Achilias D S. Microplastic pollution and monitoring in seawater and harbor environments: A meta-analysis and review. Sustain 15(11), 2023. https://doi.org/10.3390/su15119079.
  • 11 Simon-Sánchez L, Vianello A, Kirstein I V, Molazadeh M S, Lorenz C, Vollertsen J. Assessment of microplastic pollution and polymer risk in the sediment compartment of the Limfjord, Denmark. Sci Total Environ 950(April), 2024. https://doi.org/10.1016/j.scitotenv.2024.175017.
  • 12 Kushwaha M et al. Microplastics pollution in the marine environment: A review of sources, impacts and mitigation. Mar Pollut Bull 209(PA), 117109, 2024. https://doi.org/10.1016/j.marpolbul.2024.117109.
  • 13 Mohammad N E, Mumtahina R, Pervez M N, Khyum M M O, Liang Y, Naddeo V. Environmental and health impacts of PFAS: Sources, distribution and sustainable management in North Carolina (USA). Sci Total Environ 878(1), 88–100, 2023. https://doi.org/10.1016/j.scitotenv.2023.163123.
  • 14 Katherine E P, McKnight T, Reade A. 70 analyte PFAS test method highlights need for expanded testing of PFAS in drinking water. Sci Total Environ 878(1), 88–100, 2023, https://doi.org/10.1016/j.scitotenv.2023.162978.
  • 15 Pengampu D. State of the Art: Shafts algiment. DNV Confid., 2013.
  • 16 Bouyer J, Fillon M. An Experimental analysis of misalignment effects on hydrodynamic plain journal bearing performances. J Tribol 124(2), 313, 2002. https://doi.org/10.1115/1.1402180.
  • 17 Growing attention to alignment. Nav Archit (2), 60–61, 2007.
  • 18 Erlend Hanssen Nervol Ø Å A. Ensuring satisfactory aft stern tube bearing lubrication performance. LUBE Mag 154, 14–17, 2019 [Online]. Available: https://www.dnvgl.com/expert-story/maritime-impact/Ensuring-satisfactory-aft-stern-tube-bearing-lubrication-performance.html.
  • 19 Time F et al. Major findings of EAL study DNV. DNV GL Tech. Regul. NEWS 33(1), 1–12, 2019 [Online]. Available: https://www.dnv.com/expert-story/maritime-impact/Major-findings-of-EAL-study.html.
  • 20 Nikolakopoulos P G, Papadopoulos C A. A study of friction in worn misaligned journal bearings under severe hydrodynamic lubrication. Tribol Int 41(6), 461–472, 2008. https://doi.org/10.1016/j.triboint.2007.10.005.
  • 21 Litwin W. Water lubricated marine stern tube bearings— Attempt at estimating hydrodynamic capacity. In Proceedings of the ASME/STLE International Joint Tribology Conference 2009, Memphis, IJTC2009, 2010. https://doi.org/10.1115/IJTC2009-15068.
  • 22 van der Meer G H G, Quinci F, Litwin W, Wodtke M, van Ostayen R A J. Experimental comparison of the transition speed of a hydrodynamic journal bearing lubricated with oil and magnetorheological fluid. Tribol Int 189(July), 108976, 2023. https://doi.org/10.1016/j.triboint.2023.108976.
  • 23 Litwin W, Wasilczuk M, Wodtke M, Olszewski A. The influence of polymer bearing material and lubricating grooves layout on wear of journal bearings lubricated with contaminated water. Tribiology Int 179(December 2022), 11, 2023. https://doi.org/10.1016/j.triboint.2022.108159.
  • 24 Litwin W, Kropp S. Sliding bearings with sintered bronze bush lubricated by contaminated water with solid particles— Theoretical and experimental studies. Wear 532–533(June), 205070, 2023. https://doi.org/10.1016/j.wear.2023.205070.
  • 25 Niemczewska-Wójcik M, Wójcik A. Measurement techniques used for analysis of the geometric structure of machined surfaces. In 11th IMEKO TC14 Symp. Laser Metrol. Precis. Meas. Insp. Ind. LMPMI 2014 5(2), 199–202, 2014, https://doi.org/10.2478/mper-2014-0014.
  • 26 Pawlus P, Reizer R, Wieczorowski M. Problem of non-measured points in surface texture measurements. Metrol Meas Syst 24(3), 525–536, 2017. https://doi.org/10.1515/mms-2017-0046.
  • 27 Niemczewska-Wójcik M, Madej M, Kowalczyk J, Piotrowska K. A comparative study of the surface topography in dry and wet turning using the confocal and interferometric modes. Meas J Int Meas Confed 204(November) 2022. https://doi.org/10.1016/j.measurement.2022.112144.
  • 28 Peng R, Liu J, Fu X, Liu C, Zhao K. Application of machine vision method in tool wear monitoring. Int J Adv Manuf Technol 116(3–4), 1357–1372, 2021. https://doi.org/10.1007/s00170-021-07522-4.
  • 29 Hu F, Ning C, Ouyang W. Ultrasonic in-situ measurement method and error analysis of wear of PEEK water-lubricated bearing materials. Meas J Int Meas Confed 214, 1–9, 2023. https://doi.org/10.1016/j.measurement.2023.112822.
  • 30 Gertzos K P, Nikolakopoulos P G, Chasalevris A C, Papadopoulos C A. Wear identification in rotor-bearing systems by volumetric and bearing performance characteristics measurements. Comput Struct 88, 1–12, 2008. https://doi.org/10.4203/ccp.88.120.
  • 31 Bills P J, et al. Volumetric wear assessment of retrieved metal-on-metal hip prostheses and the impact of measurement uncertainty. Wear 274–275, 212–219, 2012. https://doi.org/10.1016/j.wear.2011.08.030.
  • 32 Tuke M, Taylor A, Roques A, Maul C. 3D linear and volumetric wear measurement on artificial hip joints—Validation of a new methodology. Precis Eng 34(4), 777–783, 2010. https://doi.org/10.1016/j.precisioneng.2010.06.001.
  • 33 Archard J F, Hirst W. The wear of metals under unlubricated conditions. Proc R Soc London Ser A Math Phys Sci 236(1206), 397–410, 1956. https://doi.org/10.1098/rspa.1956.0144.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9761a2ce-984b-40aa-827d-22cda98bbedd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.