Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The electromagnetic and output performance characteristics of three (3) different types of double stator permanent magnet machines are quantitatively compared and presented in this study, in order to determine the most promising machine topology amongst the considered machine types, for potential practical applications(s). Two-dimensional (2D) and three-dimensional (3D) finite element analysis (FEA) methods are deployed in the computation of the performance metrics using ANSYS-MAXWELL software. The compared machines in this work are designated as: Machine 1, Machine 2 and Machine 3, respectively. The investigated machines have varying structural arrangements and two separate excitation sources. Machine 1 has its magnets situated in the outer stator with corresponding armature windings on both inner and outer stators. The magnets of Machine 2 are located in its inner stator while it has armature windings on both inner and outer stator parts. More so, Machine 3 is equipped with magnets in its inner and outer stators, though without armature windings on the inner stator section. The considered performance metrics include: inducedelectromotive force (induced-EMF), torque, power, demagnetization, losses and efficiency. The results show that the investigated Machine 3 has higher induced-EMF value and more sinusoidal electromotive force waveform than the other compared machines. Consequently, Machine 3 also has larger electromagnetic torque and power. Moreover, Machine 1 has the best flux-weakening potential, obtained from both the ratio of its maximum speed to base speed and the flux-weakening factor ( kp).
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
829--850
Opis fizyczny
Bibliogr. 33 poz., rys., tab, wz.
Twórcy
- Department of Electrical and Electronic Engineering, Michael Okpara University of Agriculture Umudike, PMB 7267, Umuahia, Abia State, Nigeria
Bibliografia
- [1] Zhu Z.Q., Li H.Y., Deodhar R., Pride A., Sasaki T., Recent developments and comparative study of magnetically geared machines, CES Transactions on Electrical Machines and Systems, vol. 2, no. 1, pp. 13–22 (2018), DOI: 10.23919/TEMS.2018.8326448.
- [2] Song Z., Liu C., Zhao H., Quantitative comparison of distinct dual-stator permanent magnet vernier machines for direct-drive applications, IEEE Transactions on Magnetics, vol. 55, no. 7, pp. 1–6 (2019), DOI: 10.1109/TMAG.2019.2914718.
- [3] Qiu H., Zhang Y., Yang C., Yi R., Performance analysis and comparison of PMSM with concentrated winding and distributed winding, Archives of Electrical Engineering, vol. 69, no. 2, pp. 303–317 (2020), DOI: 10.24425/aee.2020.133027.
- [4] Baszynski M., Torque ripple reduction in BLDC motor based on a PWM technique for open-end winding, Archives of Electrical Engineering, vol. 70, no. 1, pp. 5–23 (2021), DOI: 10.24425/aee.2021. 136049.
- [5] Yu J., Liu C., Zhao H., Design and multi-mode operation of double-stator toroidal-winding PM vernier machine for wind-photovoltaic hybrid generation system, IEEE Transactions on Magnetics, vol. 55, no. 7, pp. 1–7 (2019), DOI: 10.1109/TMAG.2019.2906849.
- [6] Ma Y., Ching T.W., Fu W.N., Niu S., Multi-objective optimization of a direct-drive dual-structure permanent magnet machine, IEEE Transactions on Magnetics, vol. 55, no. 10, pp. 1–4 (2019), DOI: 10.1109/TMAG.2019.2922475.
- [7] Zhao Y., Huang W., Jiang W., Lin X., Wu X., Optimal design and performance analysis of dual-stator permanent magnet fault-tolerant machine, IEEE Transactions on Magnetics, vol. 57, no. 2, pp. 1–6 (2021), DOI: 10.1109/TMAG.2020.3026327.
- [8] Wei L., Nakamura T., Optimization design of a dual-stator switched flux consequent pole permanent magnet machine with unequal length teeth, IEEE Transactions on Magnetics, vol. 56, no. 2, pp. 1–5 (2020), DOI: 10.1109/TMAG.2019.2947083.
- [9] Asgari S., Mirsalim M., A novel dual-stator radial-flux machine with diametrically magnetized cylidrical permanent magnets, IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3605–3614 (2019), DOI: 10.1109/TIE.2018.2856211.
- [10] Su P., Hua W., Wu Z., Chen Z., Zhang G., Cheng M., Comprehensive comparison of rotor permanent magnet and stator permanent magnet flux-switching machines, IEEE Transactions on Industrial Electronics, vol. 66, no. 8, pp. 5862–5871 (2019), DOI: 10.1109/TIE.2018.2875636.
- [11] Awah C.C., A new topology of double-stator permanent magnet machine equipped with AC windings on both stators, Archives of Electrical Engineering, vol. 71, no. 2, pp. 1–14 (2022), DOI: 10.24425/aee. 2022.140711.
- [12] Li J., Wang K., Zhang H., Flux-focusing permanent magnet machines with modular consequent-pole rotor, IEEE Transactions on Industrial Electronics, vol. 67, no. 5, pp. 3374–3385 (2020), DOI: 10.1109/TIE.2019.2922922.
- [13] Zawilak T., Influence of rotor’s cage resistance on demagnetization process in the line start permanent magnet synchronous motor, Archives of Electrical Engineering, vol. 69, no. 2, pp. 249–258 (2020), DOI: 10.24425/aee.2020.133023.
- [14] Zhu Z.Q., Chen J.T., Pang Y., Howe D., Iwasaki S., Deodhar R., Analysis of a novel multi-tooth flux-switching PM brushless AC machine for high torque direct-drive applications, IEEE Transactions on Magnetics, vol. 44, no. 11, pp. 4313–4316 (2008), DOI: 10.1109/TMAG.2008.2001525.
- [15] Vahaj A.A., Rahideh A., Lubin T., General analytical magnetic model for partitioned-stator flux-reversal machines with four types of magnetization patterns, IEEE Transactions on Magnetics, vol. 55, no. 11, pp. 1–21 (2019), DOI: 10.1109/TMAG.2019.2929477.
- [16] Chen J.T., Zhu Z.Q., Influence of the rotor pole number on optimal parameters in flux-switching PM brushless AC machines by the lumped-parameter magnetic circuit model, IEEE Transactions on Industry Applications, vol. 46, no. 4, pp. 1381–1388 (2010), DOI: 10.1109/TIA.2010.2049720.
- [17] Fei W., Luk P.C.K., Shen J.X., Wang Y., Jin M., A novel permanent-magnet flux switching machine with an outer-rotor configuration for in-wheel light traction applications, IEEE Transactions on Industry Applications, vol. 48, no. 5, pp. 1496–1506 (2012), DOI: 10.1109/TIA.2012.2210009.
- [18] Raminosoa T., El-Refaie A.M., Pan D., Huh K.K., Alexander J.P., Grace K., Grubic S., Galioto S., Reddy P.B., Shen X., Reduced rare-earth flux-switching machines for traction applications, IEEE Transactions on Industry Applications, vol. 51, no. 4, pp. 2959–2971 (2015), DOI: 10.1109/TIA.2015. 2397173.
- [19] Yu D., Huang X., Zhang X., Zhang J., Lu Q., Fang Y., Optimal design of outer rotor interior permanent magnet synchronous machine with hybrid permanent magnet, IEEE Transactions on Applied Superconductivity, vol. 29, no. 2, pp. 1–5 (2019), DOI: 10.1109/TASC.2019.2895260.
- [20] Shi J.T., Zhu Z.Q., Wu D., Liu X., Comparative study of novel synchronous machines having permanent magnets in stator poles, 2014 International Conference on Electrical Machines (ICEM), Berlin, Germany, pp. 429–435 (2014), DOI: 10.1109/ICELMACH.2014.6960216.
- [21] McFarland J.D., Jahns T.M., El-Refaie A.M., Demagnetization performance characteristics of flux switching permanent magnet machines, IEEE International Conference on Electrical Machines (ICEM), Berlin, Germany, pp. 2001–2007 (2014), DOI: 10.1109/ICELMACH.2014.6960459.
- [22] Baranski M., Szelag W., Lyskawinski W., Analysis of the partial demagnetization process of magnets in a line start permanent magnet synchronous motor, Energies, vol. 13, no. 21, pp. 5562 (2020), DOI: 10.3390/en13215562.
- [23] Lee S.G., Kim K.S., Lee J., Kim W.H., A novel methodology for the demagnetization analysis of surface permanent magnet synchronous motors, IEEE Transactions on Magnetics, vol. 52, no. 3, pp. 1–4 (2016), DOI: 10.1109/TMAG.2015.2490203.
- [24] Qiu H., Zhang S., Rotor optimization of axial-radial flux type synchronous machine based on magnetic flux leakage, Archives of Electrical Engineering, vol. 70, no. 3, pp. 551–566 (2021), DOI: 10.24425/aee. 2021.137573.
- [25] Hu Y., Zhu S., Liu C., Magnet eddy-current loss analysis of interior PM machines for electric vehicle application, IEEE Transactions on Magnetics, vol. 53, no. 11, pp. 1–4 (2017), DOI: 10.1109/TMAG.2017.2700850.
- [26] Młot A., Kowol M., Kołodziej J., Lechowicz A., Skrobotowicz P., Analysis of IPM motor parameters in an 80-kW traction motor, Archives of Electrical Engineering, vol. 69, no. 2, pp. 467–481 (2020), DOI: 10.24425/aee.2020.133038.
- [27] Wang Y., Ma J., Liu C., Lei G., Guo Y., Zhu J., Reduction of magnet eddy current loss in PMSM by using partial magnet segment method, IEEE Transactions on Magnetics, vol. 55, no. 7, pp. 1–5 (2019), DOI: 10.1109/TMAG.2019.2895887.
- [28] Boubaker N., Matt D., Enrici P., Nierlich F., Durand G., Measurements of iron loss in PMSM stator cores based on CoFe and SiFe lamination sheets and stemmed from different manufacturing processes, IEEE Transactions on Magnetics, vol. 55, no. 1, pp. 1–9 (2019), DOI: 10.1109/TMAG.2018.2877995.
- [29] Djelloul-Khedda Z., Boughrara K., Dubas F., Kechroud A., Tikellaline A., Analytical prediction of iron-core losses in flux-modulated permanent-magnet synchronous machines, IEEE Transactions on Magnetics, vol. 55, no. 1, pp. 1–12 (2019), DOI: 10.1109/TMAG.2018.2877164.
- [30] Zhang J., Zhang B., Feng G., Gan B., Design and analysis of a low-speed and high-torque dual-stator permanent magnet motor with inner enhanced torque, IEEE Access, vol. 6, pp. 1–12 (2020), DOI: 10.1109/ACCESS.2020.3028425.
- [31] Thomas A.S., Zhu Z.Q., Li G.J., Thermal modelling of switched flux permanent magnet machines, in IEEE International Conference on Electrical Machines (ICEM), Berlin, Germany, pp. 2212–2217 (2014), DOI: 10.1109/ICELMACH.2014.6960491.
- [32] Huang Z., Fang J., Liu X., Han B., Loss calculation and thermal analysis of rotors supported by active magnetic bearings for high-speed permanent-magnet electrical machines, IEEE Transactions on Industrial Electronics, vol. 63, no. 4, pp. 2027–2035 (2016), DOI: 10.1109/TIE.2015.2500188.
- [33] Dutta R., Chong L., Rahman F.M., Analysis and experimental verification of losses in a concentrated wound interior permanent magnet machine, Progress in Electromagnetics Research B, vol. 48, no. 3, pp. 221–248 (2013), DOI: 10.2528/PIERB12110715.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9759c929-112b-4f68-9d95-8e82a9225c52