PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prioritization of overall sustainability factors of cloud manufacturing through AHP and Fuzzy AHP approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this global competitive environment, with the recent advancement in information and communication technologies, the industries are adopting new strategies to sustain. Cloud manufacturing is a new technology that utilizes data analytics for better decision-making resulting in more productive, cost, and energy efficient operations. Increasing awareness towards a clean environment and optimum utilization of resources in manufacturing motivate us to study cloud manufacturing in the context of sustainability. Therefore, a significant number of social, environmental, and economic factors of cloud manufacturing are identified through literature review, and experts’ opinions and prioritization of these factors are obtained through the AHP and Fuzzy AHP methods. As per the final results obtained, “Efficient use of resources” is the most significant factor for the adoption of cloud manufacturing process and “Remote material monitoring” is the least significant factor amongst all the factors taken under consideration. The results are found to be consistent and accurate as per the value of consistency ratio. And the percentage obtained for social, environmental, and economic factors proves the cloud manufacturing process to be a sustainable manufacturing process.
Rocznik
Tom
Strony
37--61
Opis fizyczny
Bibliogr. 33 poz.
Twórcy
  • Department of Mechanical Engineering, Delhi Technological University New Delhi 110042, India
Bibliografia
  • 1. Ren Lei, Lin Zhang, Fei Tao, Chun Zhao, Xudond Chai, Xinpei Zhao. 2015. „Cloud manufacturing: from concept to practice”. Enterprise Information Systems 9(2): 186-209.
  • 2. de Oliveira V.C., J. R. Silva. 2015. „A service-oriented framework to the design of information system service”. Journal of Service Science Research 7(2): 55-96.
  • 3. Laili Yuanjun, Fei Tao, Lin Zhang, Bhaba R. Sarker. 2012. „A study of optimal allocation of computing resources in cloud manufacturing systems”. The International Journal of Advanced Manufacturing Technology 63(5): 671-690.
  • 4. Liu Xiaoqing. F., Md Rakib Shahriar, S.M. Nahian Al Sunny, Ming C. Leu, Liwen Hu.2017. „Cyber-physical manufacturing cloud: Architecture, virtualization, communication, and testbed”. Journal of Manufacturing Systems 43: 352-364.
  • 5. Simeone Alessandro, Alessandro Caggiano, Lev Boun, Bin Deng. 2019. „Intelligent cloud manufacturing platform for efficient resource sharing in smart manufacturing networks”. Procedia Cirp 79: 233-238.
  • 6. Zhang Yingfeng, Jin Wang, Sichao Liu, Cheng Qian. 2017. „Game theory based real‐time shop floor scheduling strategy and method for cloud manufacturing”. International Journal of Intelligent Systems 32(4): 437-463.
  • 7. Chen Tin Chih Toly. 2022. „Type-II fuzzy collaborative intelligence for assessing cloud manufacturing technology applications”. Robotics and Computer-Integrated Manufacturing 78: 102399.
  • 8. Fisher Oliver, Nicolas Watson, Laura Porcu, Darren Bacon, Martin Rigley, Rachel. L. Gomes. 2018. „Cloud manufacturing as a sustainable process manufacturing route”. Journal of manufacturing systems 47: 53-68.
  • 9. Stergiou Christos, Kostas E. Psannis, Brij B. Gupta, Yutaka Ishibashi. 2018. „Security, privacy & efficiency of sustainable cloud computing for big data & IoT”. Sustainable Computing: Informatics and Systems 19: 174-184.
  • 10. Mirashe S. P., N. V. Kalyankar.2010. Cloud computing. arXiv preprint arXiv:1003.4074.
  • 11. Bora Utapal Jyoti, Majidul Ahmed. 2013. „E-learning using cloud computing”. International Journal of Science and Modern Engineering 1(2): 9-12.
  • 12. Pocatilu Paul, Felician Alecu, Marius Vetrici. 2009. „Using cloud computing for E-learning systems”. In Proceedings of the 8th WSEAS international conference on Data networks, communications, computers 9(1): 54-59.
  • 13. Gregori Fabio, Alessendra Papetti, Monica Pandolfi, Margherita Peruzzini, Michele Germani. 2017. „Digital manufacturing systems: a framework to improve social sustainability of a production site”. Procedia CIRP 63: 436-442.
  • 14. Zissis Dimitrios, Dimitrios Lekkas. 2012. „Addressing cloud computing security issues”. Future Generation computer systems 28(3): 583-592.
  • 15. Ren Lei, Lin Zhang, Lihui Wang, Fei Tao, Xudong Chai. 2017. „Cloud manufacturing: key characteristics and applications”. International journal of computer integrated manufacturing 30(6): 501-515.
  • 16. Saquib Zia, Veena Tyagi, Sherya Bokare, Shivraj Dongawe, Monika Dwivedi, Jayati Dwivedi. 2013. „A new approach to disaster recovery as a service over cloud for database system”. In 2013 15th International Conference on Advanced Computing Technologies (ICACT) 1-6.
  • 17. Singh Akshit., Nishikant Mishra, Syed Imran Ali, Nagesh Shukla, Ravi Shankar. 2015. „Cloud computing technology: Reducing carbon footprint in beef supply chain”. International Journal of Production Economics 164: 462-471.
  • 18. Guo Hua, Lin Zhang, Fei Tao, Lei Ren, Yong Liang Luo. 2010. „Research on the measurement method of flexibility of resource service composition in cloud manufacturing”. Advanced Materials Research 139: 1451-1454.
  • 19. Wu Dazhong, Matthew John Greer, David W. Rosen, Dirk Schaefer. 2013. „Cloud manufacturing: Strategic vision and state-of-the-art”. Journal of Manufacturing Systems 32(4): 564-579.
  • 20. Paniti Imre. 2014. „Adaptation of Incremental Sheet Forming into cloud manufacturing”. CIRP Journal of Manufacturing Science and Technology 7(3): 185-190.
  • 21. Zheng Bing, Yi Cong Gao,Yun Wang. 2012. „The product-mix optimization with outside processing based on theory of constraints oriented cloud manufacturing”. IApplied Mechanics and Materials 121: 1306-1310.
  • 22. Tao Fei, Qinglin Qi, Ang Liu, Andrew Kusiak. 2018. „Data-driven smart manufacturing”. Journal of Manufacturing Systems 48: 157-169.
  • 23. Jula A., E. Sundararajan, Z. Othman. 2014. „Cloud computing service composition: A systematic literature review”. Expert systems with applications 41(8): 3809-3824.
  • 24. Mourtzis D, M. Doukas, C. Lalas, N. Papakostas. 2015. „Cloud-based integrated shop-floor planning and control of manufacturing operations for mass customisation”. Procedia CIRP 33: 9-16.
  • 25. Saaty Thomas L. 1994. „How to make a decision: the analytic hierarchy process”. Interfaces 24(6): 19-43.
  • 26. Hu Yanjuan, Feifan Zhu, Lin Zhang, Yongkui Lui, Zhanli Wang. 2019. „Scheduling of manufacturers based on chaos optimization algorithm in cloud manufacturing”. Robotics and Computer-Integrated Manufacturing 58: 13-20.
  • 27. Hu Yanjuan, Lizhe Wu, Chao Shi, Yilin Wang, Feifan Zhu. 2020. „Research on optimal decision-making of cloud manufacturing service provider based on grey correlation analysis and TOPSIS”. International Journal of Production Research 58(3): 748-757.
  • 28. Sevinc Ali, Seyda Gür, Tamer Eren. 2018. „Analysis of the difficulties of SMEs in industry 4.0 applications by analytical hierarchy process and analytical network process”. Processes 6(12): 264.
  • 29. Mian Syed Hammed, Bashir Salah, Wadea Ameen, Khaja Moiduddin, Hisham Alkhalefah. 2020. „Adapting universities for sustainability education in industry 4.0: Channel of challenges and opportunities”. Sustainability 12(15): 6100.
  • 30. Luthra Sunil, Sachin kumar Mangla. 2018. „Evaluating challenges to Industry 4.0 initiatives for supply chain sustainability in emerging economies”. Process Safety and Environmental Protection 117: 168-179.
  • 31. Awan Usama., Lea Hannola, Anushree Tandon, Raman kumar Goyal, Amandeep Dhir. 2022. „Quantum computing challenges in the software industry”. A fuzzy AHP-based approach. Information and Software Technology 147: 106896.
  • 32. Yilmaz M.K., A.O. Kusakci, M. Aksoy, U. Hacioglu. 2022. „The evaluation of operational efficiencies of Turkish airports: An integrated spherical fuzzy AHP/DEA approach”. Applied Soft Computing 119: 108620.
  • 33. lbahar Esra, Cengiz Kahraman, Selcuk Cebi. 2022. „Risk assessment of renewable energy investments: A modified failure mode and effect analysis based on prospect theory and intuitionistic fuzzy AHP”. Energy 239: 121907.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97503c8a-d5a9-4523-ba81-1d2332fb5ecc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.