Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
We study the existence and long-time behavior of weak solutions to Newton–Boussinesq equations in two-dimensional domains satisfying the Poincaré inequality. We prove the existence of a unique minimal finite-dimensional pullback Dσ-attractor for the process associated to the problem with respect to a large class of non-autonomous forcing terms.
Wydawca
Rocznik
Tom
Strony
265--289
Opis fizyczny
Bibliogr. 18 poz.
Twórcy
autor
- Department of Mathematics, Hanoi University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
autor
- Foundation Sciences Faculty, Telecommunication University, 101 Mai Xuan Thuong, Nha Trang, Khanh Hoa, Vietnam
Bibliografia
- [1] J. M. Ball, Global attractor for damped semilinear wave equations, Discrete Contin. Dynam. Systems 10 (2004), 31–52.
- [2] T. Caraballo, G. Łukaszewicz and J. Real, Pullback attractors for asymptotically compact non-autonomous dynamical systems, Nonlinear Anal. 64 (2006), 484–498.
- [3] A. Carvalho, J. A. Langa and J. C. Robinson, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems, Springer, New York, 2013.
- [4] S. Chen, Symmetry analysis of convection on patterns, Comm. Theor. Phys. 1 (1982), 413–426.
- [5] S. Fang, L. Jin and B. Guo, Global existence of solutions to the periodic initial value problems for two-dimensional Newton–Boussinesq equations, Appl. Math. Mech. English Ed. 31 (2010), 405–414.
- [6] M. J. Feigenbaum, The onset spectrum of turbulence, Phys. Lett. A 74 (1979), 375–378.
- [7] G. Fucci, B. Wang and P. Singh, Asymptotic behavior of the Newton–Boussinesq equation in a two-dimensional channel, Nonlinear Anal. 70 (2009), 2000–2013.
- [8] B. Guo, Spectral method for solving the two dimensional Newton–Boussinesq equations, Acta Math. Appl. 5 (1989), 208–218.
- [9] B. Guo, Nonlinear Galerkin methods for solving the two-dimensional Newton–Boussinesq equations, Chin. Ann. of Math. 16 (1995), 379–390.
- [10] B. Guo and B. Wang, Approximate inertial manifolds for the two-dimensional Newton–Boussinesq equations, J. Partial Differential Equations 9 (1996), 237–250.
- [11] B. Guo and B. Wang, Gevrey class regularity and approximate inertial manifolds for the Newton–Boussinesq equations, Chin. Ann. of Math. 19 (1998), 179–188.
- [12] A. A. Ilyin, Lieb–Thirring integral inequalities and their applications to the attractors of the Navier–Stokes equations, Sb. Math. 196 (2005), 29–61.
- [13] J. A. Langa, G. Łukaszewicz and J. Real, Finite fractal dimension of pullback attractors for non-autonomous 2D Navier–Stokes equations in some unbounded domains, Nonlinear Anal. 66 (2007), 735–749.
- [14] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge Univ. Press, Cambridge, 2001.
- [15] R. Rosa, The global attractor for the 2D Navier–Stokes flow on some unbounded domains, Nonlinear Anal. 32 (1998), 71–85.
- [16] X. L. Song and Y. R. Hou, Pullback D-attractors for the non-autonomous Newton–Boussinesq equation in two-dimensional bounded domains, Discrete Contin. Dynam. Systems 32 (2012), 991–1009.
- [17] R. Temam, Navier–Stokes Equations: Theory and Numerical Analysis, 2nd ed., North-Holland, Amsterdam, 1979.
- [18] B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D 128 (1999), 41–52.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9746212e-7c2c-47f1-9221-a6f0a9dfc2de