PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Towards development of a prototype high-temperature latent heat storage unit as an element of a RES-based energy system (part 2)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an experimental study performed with the general aim of defining procedures for calculation and optimization of shell-and-tube latent thermal energy storage unit with metals or metal alloys as PCMs. The experimental study is focused on receiving the exact information about heat transfer between heat transfer fluid (HTF) and phase change material (PCM) during energy accumulation process. Therefore, simple geometry of heat transfer area was selected. Two configurations of shell-and-tube thermal energy storage (TES) units were investigated. The paper also highlights the emerging trend (reflected in the literature) with respect to the investigation of metal PCM-based heat storage units in recent years and shortly presents unique properties and application features of this relatively new class of PCMs.
Rocznik
Strony
401--408
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Heat Transfer, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences (IMP PAN), Fiszera 14 St. Gdańsk 80-231, Poland
  • Department of Heat Transfer, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences (IMP PAN), Fiszera 14 St. Gdańsk 80-231, Poland
  • Polish Academy of Sciences, 1 Defilad Sq., 00-901 Warszawa, Poland
autor
  • Department of Distributed Energy, The Szewalski Institute of Fluid-Flow Machinery Polish Academy of Sciences (IMP PAN), Fiszera 14 st. Gdańsk 80-231, Poland
Bibliografia
  • [1] J. Chen, D. Yang, J. Jiang, A. Ma, and D. Song, “Research Progress of Phase Change Materials (PCMs) Embedded with Metal Foam (a Review)”, Procedia Materials Science 4, 389-394, (2014).
  • [2] Z. Zhang, N. Zhang, J. Peng, X. Fang, X. Gao, and Y. Fang, “Preparation and thermal energy storage properties of paraffin/ expanded graphite composite phase change material”, Applied Energy 91, 426-431 (2012).
  • [3] L. Fan and J.M. Khodadadi, “Thermal conductivity enhancement of phase change materials for thermal energy storage: A review”, Renewable and Sustainable Energy Reviews 15, 24-46 (2011).
  • [4] F. Agyenim, N. Hewitt, P. Eames, and Mervyn Smyth, “A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)”, Renewable and Sustainable Energy Reviews 14, 615-628 (2010).
  • [5] S. Jegadheeswaran and S.D. Pohekar, “Performance enhancement in latent heat thermal storage system: a review”, Renewable and Sustainable Energy Reviews, 13, 2225-2244 (2009).
  • [6] A. Sharma, V.V. Tyagi, C.R. Chen, and D. Buddhi, “Review on thermal energy storage with phase change materials and applications”, Renewable and Sustainable Energy Reviews 13, 318-345 (2009).
  • [7] W. Wang, X. Yang, Y. Fang, J. Ding, and J. Yan, “Preparation and thermal properties of polyethylene glycol/expanded graphite blends for energy storage”, Applied Energy 86, 1479‒1483 (2009).
  • [8] J. Fukai, Y. Hamada, Y. Morozumi, and O. Miyatake, “Improvement of thermal characteristics of latent heat thermal energy storage units carbon-fiber brushes: experiments and modelling”, International Journal of Heat and Mass Transfer 46, 4513‒4525 (2003).
  • [9] A.D. Solomon, “Design criteria in PCM wall thermal storage”, Energy 4 (4), 701-709 (1979).
  • [10] H. Ge, H. Li, S. Mei, and J. Liu, “Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area”, Renewable and Sustainable Energy Reviews 21, 331-346 (2013).
  • [11] M.M. Kenisarin, “High-temperature phase change materials for thermal energy storage”, Renewable and Sustainable Energy Reviews 14, 955‒970 (2010).
  • [12] P. Blanco-Rodríguez, J. Rodríguez-Aseguinolaza, A. Gil, E. Risueño, B. D’Aguanno, I. Loroño, and L. Martín, “Experiments on a lab scale TES unit using eutectic metal alloy as PCM”, Energy Procedia 69, 769-778 (2015).
  • [13] P. Blanco-Rodríguez, J. Rodríguez-Aseguinolaza, E. Risueno, and M. Tello, “Thermophysical characterization of Mg51%Zn eutectic metal alloy: A phase change material for thermal energy storage in direct steam generation applications”, Energy 72, 414-420 (2014).
  • [14] J.P. Kotzé, T.W. von Backström, and P.J. Erens, “Simulation and testing of a latent heat thermal energy storage unit with metallic phase change material”, Energy Procedia 49, 860-869 (2014).
  • [15] E. Risueño, A.Faik, J. Rodríguez-Aseguinolaza, P. Blanco-Rodríguez, A.Gil, M. Tello, and B. D’Aguanno, “Mg-Zn-Al eutectic alloys as phase change material for latent heat thermal energy storage”, Energy Procedia 69, 1006-1013 (2015).
  • [16] M. Liu, W. Saman, and F. Bruno, “Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems”, Renewable and Sustainable Energy Reviews 16, 2118-2132 (2012).
  • [17] T. Nomura, N. Okinaka, and T. Akiyama, “Technology of latent heat storage for high temperature application: a review”, ISIJ Int. 50 (9), 1229-1239 (2010).
  • [18] J.Q. Sun, R.Y. Zhang, Z.P. Liu, and G.H. Lu, “Thermal reliability test of AL-34%Mg-6%Zn alloy as latent heat storage material and corrosion of metal with respect to thermal cycling”, Energy Conversion and Management 48, 619-624 (2007).
  • [19] C.E. Birchenall and A.F. Riechman, “Heat Storage in Eutectic Alloys”, Metallurgical Transactions A, 11A, 1415-1420 (1980).
  • [20] J.P. Kotzé, T.W. von Backstrom, and P.J. Erens, “High temperature thermal energy storage utilizing metallic phase change materials and metallic heat transfer fluids”, ASME: Journal of Solar Energy Engineering 135, 1-6 (2013).
  • [21] K. Bogucka-Bykuć, W. Włosiński, and S. Bykuć, “Towards development of a prototype high-temperature latent heat storage unit as an element of a RES-based energy system (part 1)”, Bull. Pol. Ac.: Tech. 62 (3), 489-494 (2014).
  • [22] H.D. Baehr, K. Stephan, Heat and Mass Transfer, 2nd Edition, Springer-Verlag, Berlin, 2006.
  • [23] P. Schalbart, D. Leducq, G. Alvarez, “Ice-cream storage energy efficiency with model predictive control of a refrigeration system coupled to a PCM tank”, Int. J. Refrigeration 52, 140-150 (2015).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-974165e4-672d-4aaf-80cb-34d178ed7499
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.