Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Effects of reduced (– 40 °C), ambient (20 °C), and elevated (200 °C) deformation temperatures on the microstructure evolution and strain hardening behavior of two low-C thermomechanically processed high-manganese steels were studied. The microstructure was characterized by means of scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM) techniques. The temperature-dependent tendency of austenite to strain-induced ε/α′-martensitic transformation and mechanical twinning was qualitatively and quantitatively assessed using the EBSD technique. The steel containing 26 wt% of Mn showed the beneficial strength–ductility balance at reduced deformation temperature -40 °C due to the intense Transformation-Induced Plasticity (TRIP) effect which resulted in the formation of significant ε- and α′-martensite fractions during tensile deformation. The mechanical properties of steel containing 27 wt% of Mn were more beneficial at elevated deformation temperature 200 °C due to the occurrence of intense Twinning-Induced Plasticity (TWIP) effect expressed by the presence of significant fraction of mechanical twins. Moreover, at the highest deformation temperature 200 °C, the evidence of thermally activated processes affecting the mechanical behavior of the higher Mn steel was identified and described.
Czasopismo
Rocznik
Tom
Strony
art. no. e184, 2023
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a St, 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network – Upper Silesian Institute of Technology, 12-14 K. Miarki Street, 44-100 Gliwice, Poland
autor
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a St, 44-100 Gliwice, Poland
autor
- Łukasiewicz Research Network – Upper Silesian Institute of Technology, 12-14 K. Miarki Street, 44-100 Gliwice, Poland
autor
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18a St., 44-100 Gliwice, Poland
autor
- Faculty for Engineering and Environmental Sciences, University of Applied Sciences Upper Austria, 23 Stelzhamerstrasse, 4600 Wels, Austria
Bibliografia
- 1. De Cooman BC, Estrin Y, Kim SK. Twinning-induced plasticity (TWIP) steels. Acta Mater. 2018;142:283–362. https://doi.org/10. 1016/j.actamat.2017.06.046.
- 2. Jabłońska MB, Kowalczyk K. Microstructural aspects of energy absorption of high manganese steels. Procedia Manuf. 2019;27:91–7. https://doi.org/10.1016/j.promfg.2018.12.049.
- 3. Grajcar A, Kciuk M, Topolska S, Płachcińska A. Microstruc- ture and corrosion behaviour of hot-deformed and cold-strained high-Mn steels. J Mater Eng Perform. 2016;25:2245–54. https:// doi.org/10.1007/s11665-016-2085-5.
- 4. Galindo-Nava EI, Rivera-Diaz-del-Castillo PEJ. Understand- ing martensite and twin formation in austenitic steels: A model describing TRIP and TWIP effects. Acta Mater. 2017;128:120– 34. https://doi.org/10.1016/j.actamat.2017.02.004.
- 5. Śmiglewicz A, Jabłońska M, Moćko W, Kowalczyk K, Hadasik E. Properties and structure of X30MnAlSi26-4-3 high strength steel subjected to dynamic compression processes. Arch Metall Mater. 2017;62:2255–60. https:// doi. org/ 10. 1515/ amm-2017-0332.
- 6. Grajcar A, Opiela M, Fojt-Dymara G. The influence of hot- working conditions on a structure of high-manganese steel. Arch Civ Mech Eng. 2009;9:49–58. https:// doi. org/ 10. 1016/ S1644- 9665(12)60217-9.
- 7. Pierce DT, Benzing JT, Jiménez JA, Hickel T, Bleskov I, Keumf, J. et al. The influence of temperature on the strain-hardening behavior of Fe-22/25/28Mn-3Al-3Si TRIP/TWIP steels. Mate- rialia. 2022;22:101425, doi:https://doi.org/10.1016/j.mtla.2022. 101425.
- 8. Pierce DT, Jimenez JA, Bentley J, Raabe D, Oskay C, Wit- tig J. The influence of manganese content on the stacking fault and austenite/ε-martensite interfacial energies in Fe–Mn–(Al– Si) steels investigated by experiment and theory. Acta Mater. 2014;68:238–53. https://doi.org/10.1016/j.actamat.2014.01.001.
- 9. Allain S, Bouaziz O, Chateau J. Thermally activated dislocation dynamics in austenitic FeMnC steels at low homologous temperature. Scripta Mater. 2010;62:500–5003. https://doi.org/10.1016/j. scriptamat.2009.12.026.
- 10. Yang J, Dong H, Xia Y, Li P, Wu W, Wang B. Precipitation behav- ior of carbides and cryogenic toughness in heat-affected zone of high-Mn twinning-induced plasticity steel welded joint. J Manuf Process. 2021;68:716–27. https://doi.org/10.1016/j.jmapro.2021. 06.003.
- 11. Kozłowska A, Grzegorczyk B, Morawiec M, Grajcar A. Expla- nation of the PLC effect in advanced high-strength medium-Mn steels. A review Materials. 2019;12:4175. https://doi.org/10.3390/ ma12244175.
- 12. Jabłońska MB. Effect of the conversion of the plastic deforma- tion work to heat on the behaviour of TWIP steels: a review. Arch Civ Mech Eng. 2023;23:135. https:// doi. org/ 10. 1007/ s43452-023-00656-0.
- 13. Chen J, Li S, Ren JK, Liu ZY. Temperature dependence of defor- mation behaviors in high manganese austenitic steel for cryogenic applications. Materials. 2021;14:5426. https://doi.org/10.3390/ ma14185426.
- 14. Shterner V, Timokhina IB, Beladi H. On the work-hardening behaviour of a high manganese TWIP steel at different deformation temperatures. Mater Sci Eng A. 2016;669:437–46. https:// doi.org/10.1016/j.msea.2016.05.104.
- 15. Kowalska J, Ryś J, Cios G, Bednarczyk W. The effect of reduced temperatures on microstructure development in tensile tested high-manganese steel. Mater. Sci. Eng. A. 2019;767:138406, doi :https://doi.org/10.1016/j.msea.2019.138406.
- 16. Jabłońska MB, Jasiak K, Kowalczyk K, Bednarczyk I, Skwarski M, Tkocz M, Gronostajski Z. Deformation behaviour of high- manganese steel with addition of niobium under quasi-static ten- sile loading. Mater Sci Poland. 2022;40:1–11. https://doi.org/10. 2478/msp-2022-0029.
- 17. Finfrock C, Bhattacharya S, McBrady B, Ballard T, Clarke AM, Clarke K. Decoupling the impacts of strain rate and temperature on TRIP in a Q&P steel. JOM. 2022;74:506–12. https://doi.org/ 10.1007/s11837-021-05039-5.
- 18. ASTM E8/E8M-13a. Standard test methods for tension testing of metallic materials. West Conshohocken: ASTM International, 2013.
- 19. Mosecker L, Pierce DT, Schwedt A, Beighmohamadi M, Mayer J, Bleck W, et al. Temperature effect on deformation mechanisms and mechanical properties of a high manganese C+N alloyed aus- tenitic stainless steel. Mater Sci Eng A. 2015;642:71–83. https:// doi.org/10.1016/j.msea.2015.06.047.
- 20. Saeed-Akbari A, Mosecker L, Schwedt A, Bleck W. Characteri- zation and prediction of flow behavior in high-manganese Twinning Induced Plasticity steels: Part I. Mechanism maps and work- hardening behavior. Metall. Mater. Trans. A. 2012;43:1688–1704, doi:https://doi.org/10.1007/s11661-011-0993-4.
- 21. Dastur Y, Leslie W. Mechanism of work hardening in Hadfield manganese steel. Metall Mater Trans A. 1981;12:749–59. https:// doi.org/10.1007/BF02648339.
- 22. Curtze S, Kuokkala VT. Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater. 2010;58:5129–41. https://doi.org/10. 1016/j.actamat.2010.05.049.
- 23. Ren J, Mao D, Gao Y, Chen J, Liu Z. High carbon alloyed design of a hot-rolled high-Mn austenitic steel with excellent mechani- cal properties for cryogenic application. Mater. Sci. Eng. A. 2021;827:141959, doi:https:// doi. org/ 10. 1016/j. msea. 2021. 141959.
- 24. Xiong R, Peng H, Wang S, Haitao S, Wen Y. Effect of stacking fault energy on work hardening behaviors in Fe–Mn–Si–C high manganese steels by varying silicon and carbon contents. Mater Des. 2015;85:707–14. https://doi.org/10.1016/j.matdes.2015.07. 072.
- 25. Bouaziz O, Zurob H, Chehab B, Embury JD, Allain S, Huang M. Effect of chemical composition on work hardening of Fe—Mn—C TWIP steels. Mater Sci Technol. 2021;27:707–9. https://doi.org/ 10.1179/026708309X12535382371852.
- 26. Timokhina IB, Medvedev A, Lapovok R. Severe plastic deformation of a TWIP steel. Mater Sci Eng A. 2014;593:163–9. https:// doi.org/10.1016/j.msea.2013.11.013.
- 27. Zambrano OA. Stacking fault energy maps of Fe–Mn–Al–C–Si steels: Effect of temperature, grain size, and variations in compositions. J Eng Mater Technol. 2016;138:1021–5. https://doi.org/ 10.1115/1.4033632.
- 28. Chen L, Zhao Y, Qin X. Some Aspects of high manganese Twin- ning-Induced Plasticity (TWIP) steel, A review. Acta Metall. Sin. (Engl. Lett.). 2013;26:1–15, doi: https://doi. org/ 10.1007/ s40195-012-0501-x.
- 29. Olson GB, Cohen M. A mechanism for the strain-induced nucleation of martensitic transformations. J Less Common Met. 1972;28:107–18.
- 30. Olson GB, Cohen M. A general mechanism of martensitic nuclea- tion: Part II. fcc→bcc and other martensitic transformations. Met- all. Trans. A. 1976;7:1905–1914.
- 31. Li X, Chen L, Zhao Y, Misra RDK. Influence of manganese con- tent on ε-/α′-martensitic transformation and tensile properties of low-C high-Mn TRIP steels. Mater Des. 2018;142:190–202. https://doi.org/10.1016/j.matdes.2018.01.026.
- 32. Steinmetz DR, Japel T, Wietbrock B, Eisenlohr P, Gutierrez-Urrutia I, Saeed-Akbari A, Hickel T, Roters F, Raabe D. Revealing the strain-hardening behavior of twinning-induced plasticity steels: Theory, simulations, experiments. Acta Mater. 2013;61:494–510. https://doi.org/10.1016/j.actamat.2012.09.064.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-973eca79-89f7-46d4-a368-2aefeee77f25