PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Light trapping by chemically micro-textured glass for crystalline silicon solar cells

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Results of the studies of optical properties of anti-reflective glasses with various texturization patterns, which were used as a coating for crystalline silicon solar cells, are presented. It was found that glass samples sorted by their optical transmittance demonstrated the same order as when sorted by their solar-cell short-circuit current enhancement parameter. The value of the latter depended on the parameters of texturization, such as the surface density of inclusions and their profile, and the depth of etching pits. A 2% relative increase of the solar cell efficiency was obtained for the best glass sample for null degree angle of incidence, proving enhanced light trapping properties of the studied glass.
Twórcy
  • Department of Experimental Physics, Faculty of Mathematics and Natural Sciences, University of Rzeszow, 1 Pigonia St., 35-959, Rzeszow, Poland
  • Department of Laser Photonics and Optoelectronics, School of Photonics, ITMO University, 49 Kronverksky Av., 197101, Saint-Petersburg, Russia
  • Department of Building Engineering, Faculty of Civil and Environmental Engineering, Rzeszow University of Technology, 12 Powstancow Warszawy Av., 35-059, Rzeszow, Poland
Bibliografia
  • [1] National Renewable Energy Laboratory (NREL), Golden, CO, United States Department of Energy, Temporal development of best PV cell efficiencies, NREL (2017), https://commons.m.wikimedia.org (data presented on May 4, 2017, File: Best Research-Cell Efficiencies.png).
  • [2] E. Płaczek-Popko, Top PV market solar cells 2016, Opto-Electron. Rev. 25 (2017) 55–64.
  • [3] K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%, Nat. Energy 2 (2017) 17032.
  • [4] P. Campbell, M. Green, Light trapping properties of pyramidal textured surfaces, J. Appl. Phys. 62 (1987) 243–249.
  • [5] M. Stupca, M. Alsalhi, T. Al Saud, A. Almuhanna, M.H. Nayfeh, Enhancement of polycrystalline silicon solar cells using ultrathin films of silicon nanoparticle, Appl. Phys. Lett. 91 (2007), 063107.
  • [6] J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, fourth edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 1980.
  • [7] R.B. Wehrspohn, U. Rau, A. Gombert (Eds.), Photon Management in Solar Cells, Wiley VCH, Weinheim, 2015.
  • [8] S. Tobin, C. Keavney, Experimental comparison of light-trapping structures for silicon solar cells, in: Proceedings of the 20th IEEE Photovoltaic Specialists Conference, 1988, pp. 545–547.
  • [9] J. Deubener, G. Helsch, A. Moiseev, H. Bornhöft, Glasses for solar energy conversion systems, J. Eur. Ceram. Soc. 29 (2009) 1203–1210.
  • [10] J. Müller, B. Rechz, J. Springer, M. Vanecek, TCO and light trapping in silicon thin film solar cells, Sol. Energy 77 (2004) 917–930.
  • [11] J. Jaus, M. Duell, J. Eckert, F.O. Adurodija, B. Li, R.A. Mickiewicz, D.M. Doble, Approaches to improving energy yield from PV modules, Proceedings of SPIE 7773 (2010) 77730S.
  • [12] D. Eisenhauer, H. Sai, T. Matsui, G. Koppel, B. Rech, C. Becker, Honeycomb micro-textures for light trapping in multi-crystalline silicon thin-film solar cells, Opt. Express 26 (2018), 315364.
  • [13] H. Park, M. Shin, H. Kim, S. Kim, A.H.T. Le, Y. Kim, S. Ahn, J.-S. Jeong, J. Yi, Wideband light scattering of periodic micro textured glass substrates for silicon thin-film solar cells, J. Nanosci. Nanotechnol. 17 (2017) 8562–8566.
  • [14] W. Zhang, U.W. Paetzold, U. Meier, A. Gordijn, J. Hüpkes, T. Merdzanova, Thin-film silicon solar cells on dry etched textured glass, Energy Procedia 44 (2014) 151–159.
  • [15] T. Doros, W. Doros, A Method for Manufacturing the Patterned Glass Intended Especially for Building the Solar Collectors and Batteries and Glasshouses, Patent Application WO 2009/104976 Al (2008).
  • [16] DAGlass Company http://daglass.pl/portfolio/matt-glass/ (Accessed 10 October 2018).
  • [17] Endeas Oy Company http://www.endeas.fi.download/quicksun-800-series/ (Accessed 4 June 2018).
  • [18] ASTM E1084-86(2015), Standard Test Method for Solar Transmittance (Terrestrial) of Sheet Materials Using Sunlight, ASTM International, West Conshohocken, PA, 2015, http://dx.doi.org/10.1520/E1084-86R15 www.astm.org.
  • [19] M. Pociask-Bialy, K. Kalwas, Transmittance of selected nanostructurized solar glasses designated via relative change in electrical parameters of silicon solar cells, EPJ Web Conf. 133 (2017) 03005.
  • [20] M. Čekon, R. Slávik, P. Juráš, Obtainable method of measuring the solar radiant flux based on silicone photodiode element, Appl. Mech. Mater. 824 (2016) 477–484.
Uwagi
1. The authors express their thanks for support to European Regional Development Fund and the Polish state budget within the Framework of the Carpathian Regional Operational Programme (RPPK.01.03.00-18-001/10-00) through the funding of the Center for Innovation and Transfer of Natural Science and Engineering Knowledge of the University of Rzeszow.
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-973cb5fe-7743-4de2-bc8c-f7793ecf8671
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.