PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of a low-cost approach to 2-D digital image correlation vs. a commercial stereo-DIC system in Brazilian testing of soil specimens

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to their cost, high-end commercial 3D-DIC (digital image correlation) systems are still inaccessible for many laboratories or small factories interested in lab testing materials. These professional systems can provide reliable and rapid full-field measurements that are essential in some laboratory tests with high-strain rate events or high dynamic loading. However, in many stress-controlled experiments, such as the Brazilian tensile strength (BTS) test of compacted soils, samples are usually large and fail within a timeframe of several minutes. In those cases, alternative low-cost methods could be successfully used instead of commercial systems. This paper proposes a methodology to apply 2D-DIC techniques using consumer-grade cameras and the open-source image processing software DICe (Sandia National Lab) for monitoring the standardized BTS test. Unlike most previous studies that theoretically estimate systematic errors or use local measures from strain gauges for accuracy assessment, we propose a contrast methodology with independent full-field measures. The displacement fields obtained with the low-cost system are benchmarked with the professional stereo-DIC system Aramis-3D (GOM GmbH) in four BTS experiments using compacted soil specimens. Both approaches proved to be valid tools for obtaining full-field measurements and showing the sequence of crack initiation, propagation and termination in the BTS, constituting reliable alternatives to traditional strain gauges. Mean deviations obtained between the low-cost 2D-DIC approach and Aramis-3D in measuring in-plane components were 0.08 mm in the perpendicular direction of loading (ΔX) and 0.06 mm in the loading direction (ΔY). The proposed low-cost approach implies considerable savings compared to commercial systems.
Rocznik
Strony
art. no. e4, 2022
Opis fizyczny
Bibliogr. 63 poz., fot., rys., tab., wykr.
Twórcy
  • CIGEO–Civil and Geomatics Research Group, Agroforestry Engineering Department, University of Santiago de Compostela, Higher Polytechnic School, 27002 Lugo, Spain
  • CIGEO–Civil and Geomatics Research Group, Agroforestry Engineering Department, University of Santiago de Compostela, Higher Polytechnic School, 27002 Lugo, Spain
  • PEMADE–Research Platform on Structural Wood Engineering, Agroforestry Engineering Department, University of Santiago de Compostela, Higher Polytechnic School, 27002 Lugo, Spain
  • CIGEO–Civil and Geomatics Research Group, Agroforestry Engineering Department, University of Santiago de Compostela, Higher Polytechnic School, 27002 Lugo, Spain
autor
  • CIGEO–Civil and Geomatics Research Group, Agroforestry Engineering Department, University of Santiago de Compostela, Higher Polytechnic School, 27002 Lugo, Spain
  • PEMADE–Research Platform on Structural Wood Engineering, Agroforestry Engineering Department, University of Santiago de Compostela, Higher Polytechnic School, 27002 Lugo, Spain
  • CIGEO–Civil and Geomatics Research Group, Agroforestry Engineering Department, University of Santiago de Compostela, Higher Polytechnic School, 27002 Lugo, Spain
autor
  • CIGEO–Civil and Geomatics Research Group, Agroforestry Engineering Department, University of Santiago de Compostela, Higher Polytechnic School, 27002 Lugo, Spain
Bibliografia
  • 1. Fourmeau M, Gomon D, Vacher R, Hokka M, Kane A, Kuokkala V-T. Application of DIC technique for studies of Kuru granite rock under static and dynamic loading, procedia. Mater Sci. 2014;3:691–7. https://doi.org/10.1016/j.mspro.2014.06.114.
  • 2. Mardoukhi A, Mardoukhi Y, Hokka M, Kuokkala VT. Effects of heat shock on the dynamic tensile behavior of granitic rocks. Rock Mech Rock Eng. 2017;50:1171–82. https://doi.org/10.1007/s00603-017-1168-4.
  • 3. Maruvanchery V, Kim E. Effects of water on rock fracture properties: studies of mode I fracture toughness, crack propagation velocity, and consumed energy in calcite-cemented sandstone. Geomech Eng. 2019;17:57–67. https://doi.org/10.12989/gae.2019.17.1.057.
  • 4. Stirling RA, Simpson DJ, Davie CT. The application of digital image correlation to Brazilian testing of sandstone. Int J Rock Mech Min Sci. 2013;60:1–11. https://doi.org/10.1016/j.ijrmms.2012.12.026.
  • 5. Mubaraki M, Abd-Elhady AA, Sallam HEDM. Mixed mode fracture toughness of recycled tire rubber-filled concrete for airfield rigid pavements. Int J Pavement Res Technol. 2013;6:8–14.
  • 6. Wang P, Gao N, Ji K, Stewart L, Arson C. DEM analysis on the role of aggregates on concrete strength. Comput Geotech. 2020. https://doi.org/10.1016/j.compgeo.2019.103290.
  • 7. Romeo E. Two-dimensional digital image correlation for asphalt mixture characterisation: interest and limitations. Road Mater Pavement Des. 2013. https:// doi. org/10. 1080/ 14680 629. 2013.815128.
  • 8. Akin ID, Likos WJ. Brazilian tensile strength testing of compacted clay. Geotech Test J. 2017;40:608–17. https://doi.org/10.1520/GTJ20160180.
  • 9. Stirling RA, Hughes P, Davie CT, Glendinning S. Tensile behaviour of unsaturated compacted clay soils—a direct assessment method. Appl Clay Sci. 2015;112–113:123–33. https://doi.org/10.1016/j.clay.2015.04.011.
  • 10. Erarslan DJ, Williams N. Investigating the effect of cyclic loading on the indirect tensile strength of rocks. Rock Mech Rock Eng. 2012;45:327–40. https://doi.org/10.1007/s00603-011-0209-7.
  • 11. Erarslan N, Alehossein H, Williams N. Tensile fracture strength of Brisbane tuff by static and cyclic loading tests. Rock Mech Rock Eng. 2014;47:1135–51. https:// doi. org/ 10. 1007/s00603-013-0469-5.
  • 12. Yang YW, Bhalla S, Wang C, Soh CK, Zhao J. Monitoring of rocks using smart sensors. Tunn Undergr Space Technol. 2007;22:206–21. https://doi.org/10.1016/j.tust.2006.04.004.
  • 13. Belrhiti Y, Dupre JC, Pop O, Germaneau A, Doumalin P, Huger M, Chotard T. Combination of Brazilian test and digital image correlation for mechanical characterization of refractory materials. J Eur Ceram Soc. 2017;37:2285–93. https://doi.org/10.1016/j.jeurceramsoc.2016.12.032.
  • 14. Sgambitterra E, Lamuta C, Candamano S, Pagnotta L. Brazilian disk test and digital image correlation: a methodology for the mechanical characterization of brittle materials. Mater Struct. 2018;51:1–17. https://doi.org/10.1617/s11527-018-1145-8.
  • 15. Aliabadian Z, Zhao G, Russell AR. Crack development in trans-versely isotropic sandstone discs subjected to Brazilian testsobserved using digital image correlation. Int J Rock Mech Min Sci. 2019;119:211–21. https://doi.org/10.1016/j.ijrmms.2019.04.004.
  • 16. Zhang H, Nath F, Parrikar PN, Mokhtari M. Analyzing the validity of Brazilian testing using DIC and numerical simulation techniques. Energies. 2020;13:1441.
  • 17. Dutler N, Nejati M, Valley B, Amann F, Molinari G. On the link between fracture toughness, tensile strength, and fracture process zone in anisotropic rocks. Eng Fract Mech. 2018;201:56–79. https://doi.org/10.1016/j.engfracmech.2018.08.017.
  • 18. Ravanelli R, Nascetti A, Di Rita M, Belloni V, Mattei D, Nisticó N, Crespi M. A new igital image correlation software for displacements field measurement in structural applications. Int Arch Photogramm Remote Sens Spatial Inf Sci. 2017;42:139–45. https:// doi. org/ 10. 5194/ isprs- archives-XLII-4-W2-139-2017.
  • 19. Gauvin C, Jullien D, Doumalin P, Dupré JC, Gril J. Image correlation to evaluate the influence of hygrothermal loading on wood. Strain. 2014;50:428–35. https://doi.org/10.1111/str.12090.
  • 20. Phillips N, Hassan GM, Dyskin A, Macnish C, Pasternak E. Digital image correlation to analyze nonlinear elastic behavior of materials. Proc Int Conf Image Process. 2018. https://doi.org/10.1109/ICIP.2017.8297107.
  • 21. Mojsilović N, Salmanpour AH. Masonry walls subjected to in-plane cyclic loading: application of digital image correlation for deformation field measurement. Int J Mason Res Innov. 2016;1:165–87. https://doi.org/10.1504/IJMRI.2016.077473.
  • 22. Halding PS, Schmidt JW, Christensen CO. DIC-monitoring of full-scale concrete bridge using high-resolution wide-angle lens camera. In: Maintenance, safety, risk, management and life-cycle performance of bridges. CRC Press; 2018. https://doi.org/10.1201/9781315189390-203.
  • 23. Quanjin M, Rejab MRM, Halim Q, Merzuki MNM, Darus MAH. Experimental investigation of the tensile test using digital image correlation (DIC) method. Mater Today Proc. 2020;27:757–63. https://doi.org/10.1016/j.matpr.2019.12.072.
  • 24. Li C, Luo H, Pan B. High-throughput measurement of coefficient of thermal expansion using a high-resolution digital single-lens reflex camera and digital image correlation. Rev Sci Instrum. 2020. https://doi.org/10.1063/5.0013496.
  • 25. Zhao P, Zsaki AM, Nokken MR. Using digital image correlation to evaluate plastic shrinkage cracking in cement-based materials. Constr Build Mater. 2018;182:108–17. https://doi.org/10.1016/j.conbuildmat.2018.05.239.
  • 26. Chen F, Chen X, Xie X, Feng X, Yang L. Full-field 3D measurement using multi-camera digital image correlation system. Opt Lasers Eng. 2013;51:1044–52. https:// doi. org/ 10. 1016/j. optlaseng.2013.03.001.
  • 27. Yu L, Lubineau G. Modeling of systematic errors in stereo-digital image correlation due to camera self-heating. Sci Rep. 2019;9:1–15. https://doi.org/10.1038/s41598-019-43019-7.
  • 28. Wang P, Guo X, Sang Y, Shao L, Yin Z, Wang Y. Measurement of local and volumetric deformation in geotechnical triaxial testing using 3D-digital image correlation and a subpixel edge detection algorithm. Acta Geotech. 2020;15:2891–904. https://doi.org/10.1007/s11440-020-00975-z.
  • 29. White TG, Patten JRW, Wan KH, Pullen AD, Chapman DJ, Eakins DE. A single camera three-dimensional digital image correlation system for the study of adiabatic shear bands. Strain. 2017;53:1–11. https://doi.org/10.1111/str.12226.
  • 30. Chi Y, Yu L, Pan B. Low-cost, portable, robust and high-resolution single-camera stereo-DIC system and its application in high-temperature deformation measurements. Opt Lasers Eng. 2018;104:141–8. https://doi.org/10.1016/j.optlaseng.2017.09.020.
  • 31. Yu L, Tao R, Lubineau G. Accurate 3D shape, displacement and deformation measurement using a smartphone. Sensors. 2019. https://doi.org/10.3390/s19030719.
  • 32. Pan B, Yu L, Zhang Q. Review of single-camera stereo-digital image correlation techniques for full-field 3D shape and deformation measurement. Sci China Technol Sci. 2018;61:2–20. https://doi.org/10.1007/s11431-017-9090-x.
  • 33. Solav D, Moerman KM, Jaeger AM, Genovese K, Herr HM. MultiDIC: an open-source toolbox for multi-view 3D digital image correlation. IEEE Access. 2018;6:30520–35. https://doi.org/10.1109/ACCESS.2018.2843725.
  • 34. Blaber J, Adair B, Antoniou A. Ncorr: open-source 2D digital image correlation Matlab software. Exp Mech. 2015;55:1105–22. https://doi.org/10.1007/s11340-015-0009-1.
  • 35. Olufsen SN, Andersen ME, Fagerholt E. μDIC: an open-source toolkit for digital image correlation. SoftwareX. 2020;11: 100391.https://doi.org/10.1016/j.softx.2019.100391.
  • 36. Belloni V, Ravanelli R, Nascetti A, Di Rita M, Mattei D, Crespi M. Py2dic: a new free and open source software for displacement and strain measurements in the field of experimental mechanics. Sensors (Switzerland). 2019;19:1–19. https://doi.org/10.3390/s19183832.
  • 37. Belloni V, Ravanelli R, Nascetti A, Di Rita M, Mattei D, Crespi M. Digital image correlation from commercial to FOS software: a mature technique for full-field displacement measurements. Int Arch Photogramm Remote Sens Spatial Inf Sci. 2018;42:91–5. https://doi.org/10.5194/isprs-archives-XLII-2-91-2018.
  • 38. Lunt D, Thomas R, Roy M, Duff J, Atkinson M, Frankel P, Preuss M, da Fonseca JQ. Comparison of sub-grain scale digital image correlation calculated using commercial and open-source software packages. Mater Charact. 2020. https://doi.org/10.1016/j.matchar.2020.110271.
  • 39. ISRM. The ISRM suggested methods for rock characterization, testing and monitoring: 2007–2014. Cham: Springer; 2015. https://doi.org/10.1007/978-3-319-07713-0.
  • 40. ASTM, D3967-16 (2016) Standard test method for splitting tensile strength of intact rock core specimens. ASTM International.
  • 41. Perras MA, Diederichs MS. A review of the tensile strength of rock: concepts and testing. Geotech Geol Eng. 2014;32:525–46. https://doi.org/10.1007/s10706-014-9732-0.
  • 42. UNE-EN 13286-2 (2011) Unbound and hydraulically bound mixtures—part 2: test methods for laboratory reference density and water content—proctor compaction. UNE standards.
  • 43. Celeiro M, Lamas JP, Arcas R, Lores M. Antioxidants profiling of by-products from Eucalyptus Greenboards Manufacture. Antioxidants. 2019;8:263. https://doi.org/10.3390/antiox8080263.
  • 44. Zhang T, Liu S, Zhan H, Ma C, Cai G. Durability of silty soil stabilized with recycled lignin for sustainable engineering materials. J Clean Prod. 2020;248: 119293. https://doi.org/10.1016/j.jclepro.2019.119293.
  • 45. Yang B, Zhang Y, Ceylan H, Kim S, Gopalakrishnan K. Assessment of soils stabilized with lignin-based byproducts. Transp Geotech. 2018;17:122–32. https://doi.org/10.1016/j.trgeo.2018.10.005.
  • 46. Sharafisafa M, Shen L, Xu Q. Characterisation of mechanical behaviour of 3D printed rock-like material with digital image correlation. Int J Rock Mech Min Sci. 2018;112:122–38. https://doi.org/10.1016/j.ijrmms.2018.10.012.
  • 47. Reu P. The art and application of DIC. Stereo-rig design: stereo-angle selection—part 4. Exp Tech. 2013;37:1–2.
  • 48. IDICS. A good practices guide for digital image correlation. Int Digit Image Correl Soc. 2018. https://doi.org/10.32720/idics/gpg.ed1.
  • 49. Sciuti VF, Canto RB, Neggers J, Hild F. On the benefits of correcting brightness and contrast in global digital image correlation: Monitoring cracks during curing and drying of a refractorycastable. Opt Lasers Eng. 2021;136: 106316. https://doi.org/10.1016/j.optlaseng.2020.106316.
  • 50. Zhang Z. A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell. 2000;22:1330–4. https://doi.org/10.1109/34.888718.
  • 51. Chen L-C, Chang C-Y, Lee W-C, Ma C-C. Full-field measurement of deformation and vibration using digital image correlation. Smart Sci. 2015;3:80–6. https://doi.org/10.1080/23080477.2015.11665640.
  • 52. Kasprzak B, Pękala J, Stępień A, Świerczyński Z. Metrology and measurement systems. Architecture. 2010. https:// doi. org/ 10.1515/mms-2016-0028.Brought.
  • 53. Zhong FQ, Indurkar PP, Quan CG. Three-dimensional digital image correlation with improved efficiency and accuracy. Meas J Int Meas Confed. 2018;128:23–33. https://doi.org/10.1016/j.measurement.2018.06.022.
  • 54. Hartley R, Zisserman A. Multiple view geometry in computer vision. Cambridge University Press; 2005.
  • 55. Balcaen R, Reu PL, Lava P, Debruyne D. Stereo-DIC uncertainty quantification based on simulated images. Exp Mech. 2017;57:939–51. https://doi.org/10.1007/s11340-017-0288-9.
  • 56. Sutton MA, Matta F, Rizos D, Ghorbani R, Rajan S, Mollenhauer DH, Schreier HW, Lasprilla AO. Recent progress in digital image correlation: background and developments since the 2013 W M Murray Lecture. Exp Mech. 2017;57:1–30. https:// doi. org/ 10.1007/s11340-016-0233-3.
  • 57. Ahrens J, Geveci B, Law C (2005) ParaView: an end-user tool for large data visualization, Tech Rep LA-UR-03-1. The visualization handbook. 2005; 717:8:1–17.
  • 58. Hu X, Xie Z, Liu F. Estimating gray intensities for saturated speckle to improve the measurement accuracy of digital image correlation. Opt Lasers Eng. 2021;139: 106510. https://doi.org/10.1016/j.optlaseng.2020.106510.
  • 59. Dong YL, Pan B. A review of speckle pattern fabrication and assessment for digital image correlation. Exp Mech. 2017;57:1161–81. https://doi.org/10.1007/s11340-017-0283-1.
  • 60. UNE-EN 13286-2 (2003) Unbound and hydraulically bound mixtures part 42: test method for the determination of the indirect tensile strength of hydraulically bound mixtures. UNE standards.
  • 61. He W, Chen K, Hayatdavoudi A, Huang P, Sawant K, Zhang C. Incorporating the effects of elemental concentrations on rock tensile failure. Int J Rock Mech Min Sci. 2019;123: 104062. https://doi.org/10.1016/j.ijrmms.2019.104062.
  • 62. Sutton MA, Yan JH, Tiwari V, Schreier HW, Orteu JJ. The effect of out-of-plane motion on 2D and 3D digital image correlation measurements. Opt Lasers Eng. 2008;46:746–57. https://doi.org/10.1016/j.optlaseng.2008.05.005.
  • 63. Siegmann P, Felipe-Sesé L, Díaz FA. An alternative approach for improving DIC by using out-of-plane displacement information.Opt Lasers Eng. 2020;128: 105996. https://doi.org/10.1016/j.optlaseng.2019.105996.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9734032c-bccd-4069-9e07-203e54b61d43
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.