PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Analysis of computer vision and image analysis technics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Computer vision and image recognition are one of the most popular theme nowadays. Moreover, this technology developing really fast, so filed of usage increased. The main aims of this article are explain basic principles of this field and overview some interesting technologies that nowadays are widely used in computer vision and image recognition.
Twórcy
autor
  • Lviv Polytechnic National University
autor
  • Lviv Polytechnic National University
Bibliografia
  • 1. Richard Szeliski. 2011. Computer Vision: Algorithms and Applications. – United Kingdom: Springer London, 812 p.
  • 2. Richard Szeliski. 2014. Concise Computer Vision: An Introduction into Theory and Algorithms. – United Kingdom: Springer London, 429 p.
  • 3. Brytik V., Grebinnik O., Kobziev V. 2016. Research the possibilities of different filters and their application to image recognition problems. – Poland: ECONTECHMOD. An international quarterly journal, Vol. 5, No. 4, рр. 21–27.
  • 4. Ethem Alpaydin. 2010. Introduction to Machine Learning. London: The MIT Press, 584p.
  • 5. Satya Mallick. 2016. Image Recognition and Object Detection. Available online at: http://www.learnopencv.com/image-recognition-and-objectdetection-part1/
  • 6. Ken Weiner. 2016. Why image recognition is about to transform business. Available online at: https://techcrunch.com/2016/04/30/why-imagerecognition-is-about-to-transform-business/
  • 7. John C. Russ, F. Brent Neal. 2015. The Image Processing Handbook. United States of America: Florida CRC Press, 1035 p.
  • 8. Venmathi E. Ganesh, N. Kumaratharan. 2016. Kirsch Compass Kernel Edge Detection Algorithm for Micro Calcification Clusters in Mammograms. Middle-East Journal of Scientific Research, 24 (4), рр. 1530–1535.
  • 9. Brytik V., Zhilina E., 2014. Investigation possibilities of various filters which used in pattern recognition problems Bionica Intellecta, 2(83), рр. 88–95.
  • 10. Semenets V., Natalukha Yu., O. Taranukha, Tokarev V., 2014. About One Method of Mathematical Modelling of Human Vision Functions. ECONTECHMOD. An international quarterly journal, Vol. 3, No. 3, рр. 51–59.
  • 11. Nick McClure. 2017. TensorFlow Machine Learning Cookbook. Packt Publishing, 370 p.
  • 12. Tensorflow. Image Recognition. Available online at: https://www.tensorflow.org/tutorials/image_recognition
  • 13. Michael Nielsen. 2017. Using neural nets to recognize handwritten digits. Available online at: http://neuralnetworksanddeeplearning.com/chap1.html
  • 14. Michael Nielsen. 2017. How the backpropagation algorithm works. Available online at: http://neuralnetworksanddeeplearning.com/chap2.html
  • 15. Michael Nielsen. 2017. Improving the way neural networks learn. Available online at: http://neuralnetworksanddeeplearning.com/chap3.html
  • 16. Michael Nielsen. 2017. Why are deep neural networks hard to train? Available online at: http://neuralnetworksanddeeplearning.com/chap5.html
  • 17. The British Machine Vision Association and Society for Pattern Recognition. 2017. What is computer vision? Available online at: http://www.bmva.org/visionoverview
  • 18. Gary Bradski, Adrian Kaehler. 2016. Learning OpenCV 3 Computer Vision in C++ with the OpenCV Library. O'ReillyMedia, 1024 p.
  • 19. Parker J. R. 2011. Algorithms for Image Processing and Computer Vision. Wiley, 504 p.
  • 20. Simon J. D. Prince. 2014. Computer Vision: Models, Learning, and Inference. Cambridge University Press, 505 p.
  • 21. Giovanni Maria Farinella, Sebastiano Battiato, Roberto Cipolla. 2015. Advanced Topics in Computer Vision. Springer Science & Business Media, 433 p.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-972ee811-7da7-493a-8534-725d95dbb9aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.