Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study aimed to evaluate the carbon and environmental service potential in the natural tourism zone of special purpose forest areas Mount Bromo. The study focused on understanding how this area, with its specific tree compositions and sizes, contributes to carbon absorption and environmental benefits, which can also translate into carbon credits, a form of state revenue. The methodology involved purposive sampling to create observational sample plots (OSP) of varying sizes based on tree diameter. These plots were designed to measure the biomass, carbon potential, and environmental service potential of the trees in a given area. The collected data included the composition of tree species, the number of each type of tree, their diameters, and heights. The study applied specific formulas to determine the potential of biomass, carbon, and environmental services in the area. Key findings revealed a dominance of mahogany trees (83 trees per hectare) among ten identified plant species, indicating a specific but lower biodiversity in this zone. The significant results of the study include the quantification of biomass potential, which was found to be 787.84 tons/ha above-ground and 228.47 tons/ha below-ground, totaling 1016.31 tons/hectare. The study also evaluated the environmental service potential, including CO2 absorption and O2 production. The CO2 absorption capacity of the area was estimated at 1753.04 tons/ha, with a corresponding high O2 production of 1279.72 tons/ha. Additionally, the potential for carbon credits in the area was calculated at approximately 70.12 US$/ha. This research is crucial in understanding how specific forest areas, like special purpose forest areas Mount Bromo, can play a significant role in global environmental sustainability efforts.
Czasopismo
Rocznik
Tom
Strony
14--22
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
autor
- Environmental Sciences Study Program, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
autor
- Environmental Sciences Study Program, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
autor
- Environmental Sciences Study Program, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
autor
- Environmental Sciences Study Program, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
- Environmental Sciences Study Program, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
autor
- Civil Engineering Study Program, Faculty of Engineering, Universitas Sebelas Maret, Jl. Ir. Sutami 36A Surakarta, 57126, Indonesia
autor
- Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Komplek Universitas Pertamina, DKI Jakarta, Jakarta Selatan, Indonesia
autor
- Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Komplek Universitas Pertamina, DKI Jakarta, Jakarta Selatan, Indonesia
Bibliografia
- 1. Ahammad R., Stacey N., Sunderland T. 2021. Analysis of forest-related policies for supporting ecosystem services-based forest management in Bangladesh. Ecosystem Services, 48:101235.
- 2. Allam R.J. 2009. Improved oxygen production technologies. Energy Procedia, 1:461–470.
- 3. Antinori C., Sathaye J. 2007. Assessing transaction costs of project-based greenhouse gas emissions trading. Lawrence Berkeley Natl Lab.
- 4. Baciu G.E., Dobrotă C.E., Apostol E.N. 2021. Valuing Forest Ecosystem Services. Why Is an Integrative Approach Needed? Forests, 12.
- 5. Badan Standardisasi Nasional Indonesia (BSNI). 2011. Pengukuran dan Penghitungan cadangan karbon: pengukuran lapangan untuk penaksiran cadangan karbon hutan (Ground-based forest carbon accounting). Standar Nasional Indonesia, Jakarta.
- 6. Chen L., Jiang L., Jing X., et al. 2021. Above- and belowground biodiversity jointly drive ecosystem stability in natural alpine grasslands on the Tibetan Plateau. Global Ecology and Biogeography, 30:1418–1429.
- 7. Dumitrașcu M., Kucsicsa G., Dumitrică C., et al. 2020. Estimation of Future Changes in Aboveground Forest Carbon Stock in Romania: A Prediction Based on Forest-Cover Pattern Scenario. Forests, 11.
- 8. Ewunetie G.G., Miheretu B.A., Mareke G.T. 2021. Carbon stock potential of Sekele Mariam forest in North Western Ethiopia: an implication for climate change mitigation. Modeling Earth Systems and Environment, 7:351–362.
- 9. Garcia J.A., Villen-Guzman M., Rodriguez-Maroto J.M., Paz-Garcia J.M. 2022. Technical analysis of CO2 capture pathways and technologies. Journal of Environmental Chemical Engineering, 10:108470.
- 10. Godin J., Liu W., Ren S., Xu C.C. 2021. Advances in recovery and utilization of carbon dioxide: A brief review. Journal of Environmental Chemical Engineering, 9:105644.
- 11. Hardjana A.K. 2010. Potensi biomassa dan karbon pada hutan tanaman Acacia mangium di HTI PT. Surya Hutani Jaya, Kalimantan Timur. Jurnal Penelitian Sosial dan Ekonomi Kehutanan, 7:237–249.
- 12. Hayati A.N., Afiati N., Helmi M. 2023. Carbon Sequestration of Above Ground Biomass Approach in the Rehabilitated Mangrove Stand at Jepara Regency, Central Java, Indonesia. Jurnal Ilmiah Perikanan dan Kelautan, 15.
- 13. Hong P., Schmid B., De Laender F., et al. 2022. Biodiversity promotes ecosystem functioning despite environmental change. Ecology Letters, 25:555–569.
- 14. Huang M-T., Zhai P-M. 2021. Achieving Paris Agreement temperature goals requires carbon neutrality by the middle century with far-reaching transitions in the whole society. Advances in Climate Change Research, 12:281–286. https://doi. org/10.1016/j.accre.2021.03.004
- 15. Irama A.B., SE MBA. 2020. Perdagangan Karbon di Indonesia: Kajian Kelembagaan dan Keuangan Negara. Info Artha, 4:83–102.
- 16. Kath J., Byrareddy V.M., Craparo A., et al. 2020a. Not so robust: Robusta coffee production is highly sensitive to temperature. Global Change Biology, 26:3677–3688.
- 17. Khatoon S., Kim M-H. 2022. Preliminary design and assessment of concentrated solar power plant using supercritical carbon dioxide Brayton cycles. Energy Conversion and Management, 252:115066.
- 18. Koul B., Yakoob M., Shah M.P. 2022. Agricultural waste management strategies for environmental sustainability. Environmental Research, 206:112285. https://doi.org/10.1016/j.envres.2021.112285
- 19. Lavorel S., Locatelli B., Colloff M.J., Bruley E. 2020. Co-producing ecosystem services for adapting to climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 375:20190119.
- 20. Lee R.P., Meyer B., Huang Q., Voss R. 2020. Sustainable waste management for zero waste cities in China: potential, challenges, and opportunities. Clean Energy, 4:169–201. https://doi.org/10.1093/ce/zkaa013
- 21. Liang F., Yang W., Xu L., et al. 2020. Closing extra CO2 into plants for simultaneous CO2 fixation, drought stress alleviation, and nutrient absorption enhancement. Journal of CO2 Utilization, 42:101319.
- 22. Martínez Pastur G., Perera A.H., Peterson U., Iverson L.R. 2018. Ecosystem Services from Forest Landscapes: An Overview. In: Perera A.H., Peterson U., Pastur G.M., Iverson L.R. (eds). Springer International Publishing, Cham, pp 1–10.
- 23. Ramesh T., Bolan N.S., Kirkham M.B., et al. 2019. Soil organic carbon dynamics: Impact of land use changes and management practices: A review. Advances in Agronomy, Academic Press, pp 1–107.
- 24. Shahbaz M., Nasir M.A., Hille E., Mahalik M.K. 2020. UK’s net-zero carbon emissions target: Investigating the potential role of economic growth, financial development, and R&D expenditures based on historical data (1870–2017). Technological Forecasting and Social Change, 161:120255. https://doi. org/10.1016/j.techfore.2020.120255
- 25. Stefanakis A.I. 2019. The Role of Constructed Wetlands as Green Infrastructure for Sustainable Urban Water Management. Sustainability, 11.
- 26. Suhardono S., Septiariva I.Y., Mulyana R. 2024. Human activities and forest fires in Indonesia: An analysis of the Bromo incident and implications for conservation tourism. Trees for People, 15.
- 27. Suhardono S., Septiariva I.Y., Rachmawati S. 2023. Changes in the Distribution of Air Pollutants (Carbon Monoxide) during the Control of the COVID-19 Pandemic in Jakarta, Surabaya, and Yogyakarta, Indonesia. Journal of Ecological Engineering, 24:151–162.
- 28. Suryawan I.W.K., Lee C-H. 2023a. Community preferences in carbon reduction: Unveiling the importance of adaptive capacity for solid waste management. Ecological Indicators, 157:111226.
- 29. Suryawan I.W.K., Lee C-H. 2023b. Citizens’ willingness to pay for adaptive municipal solid waste management services in Jakarta, Indonesia. Sustainable Cities and Society, 97.
- 30. Suryawan I.W.K., Rahman A., Lim J., Helmy Q. 2021. Environmental impact of municipal wastewater management based on analysis of life cycle assessment in Denpasar City. Desalination and Water Treatment, 244:55–62.
- 31. Sutrisno A.D., Chen Y-J., Suryawan I.W., Lee C-H. 2023. Building a Community’s Adaptive Capacity for Post-Mining Plans Based on Important Performance Analysis: A Case Study from Indonesia. Land, 12.
- 32. Tan P.Y., Zhang J., Masoudi M., et al. 2020. A conceptual framework to untangle the concept of urban ecosystem services. Landscape and Urban Planning, 200:103837.
- 33. Trlica A., Hutyra L.R., Morreale L.L., et al. 2020. Current and future biomass carbon uptake in Boston’s urban forest. Science of the Total Environment, 709:136196.
- 34. Vashum K.T., Jayakumar S. 2012. Methods to estimate above-ground biomass and carbon stock in natural forests - a review. Journal of Ecosystem and Ecography, 2:1–7.
- 35. Verisandria R., Schaduw J., Sondak C., et al. 2018. Estimasi potensi karbon pada sedimen ekosistem mangrove di pesisir Taman Nasional Bunaken bagian utara. Journal of Coastal and Marine Tropics, 6:81–97.
- 36. Verma A.K., Rout P.R., Lee E., et al. 2020. Biodiversity and Sustainability. In: Sustainability, 255–275.
- 37. Wibowo A.R.A., Setyaningsih W., Nugroho P.S. 2020. Penerapan Arsitektur Ekologi pada Rancang Bangun Wisata Edukasi di Taman Hutan Gunung Bromo Karanganyar. Senthong, 3.
- 38. Zarbakhsh S., Shahsavar A.R. 2023. Exogenous γ-aminobutyric acid improves the photosynthesis eff iciency, soluble sugar contents, and mineral nutrients in pomegranate plants exposed to drought, salinity, and drought-salinity stresses. BMC Plant Biology, 23:543.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9728220f-2bd3-4d05-958a-99752e1c6646