PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Cladophora glomerata extract and static magnetic field influences the germination of seeds and multielemental composition of carrot

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As carrot seeds are notoriously slow to germinate and are often irregular in breaking dormancy, new methods of stimulation are still sought. This study examines for the first time the effect of an algal extract and static magnetic field (SMF) and their synergistic effect on carrot seeds germination. The algal extract, produced from freshwater macroalgae - Cladophora glomerata, was used directly to the paper substrate at a dose of 20, 40, 60, 80 and 100 %. The exposure of seeds to the magnetic field (500 mT and 1 T) was applied for 3, 6 and 12 min. The highest germination ability of carrot seedlings was observed for 20 and 80 % algal extract. The weakest germination was observed for the highest concentration of algal extract causing the highest amount of abnormal and dead seedlings. Parallel use of seeds stimulated with magnetic field and algal extract did not increase the number of germinated seeds significantly. Carrot’s seeds treated with algal extract showed increased content of elements - macro- Ca, K, Mg, S and microelements Cu, Fe, Mn and Zn. Future experiments are required to confirm the stimulation effect of algal extract (optimal concentration) and magnetic field (various induction values) on seeds germination.
Rocznik
Strony
629--641
Opis fizyczny
Bibliogr. 77 poz., rys., tab.
Twórcy
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, ul. M. Smoluchowskiego 25, 50-372 Wrocław, Poland
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, ul. M. Smoluchowskiego 25, 50-372 Wrocław, Poland
  • Department of Advanced Material Technologies, Faculty of Chemistry, Wroclaw University of Science and Technology, ul. M. Smoluchowskiego 25, 50-372 Wrocław, Poland
  • Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24A, 50-363 Wrocław, Poland
autor
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, ul. M. Smoluchowskiego 25, 50-370 Wrocław, Poland
  • University of Applied Sciences Dresden, Faculty of Agriculture/Environment/Chemistry, Pillnitzer Platz 2, D-01326 Dresden, Germany
  • Department of Mechanics, Materials and Biomedical Engineering, Faculty of Mechanical Engineering, Wroclaw University of Science and Technology, ul. M. Smoluchowskiego 25, 50-370 Wrocław, Poland
autor
  • Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24A, 50-363 Wrocław, Poland
  • Plant Breeding and Acclimatization Institute (IHAR) - National Research Institute, Radzików, 05-870 Błonie, Poland
Bibliografia
  • [1] du Jardin P. Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic (Amsterdam). 2015;196:3-14. DOI: 10.1016/j.scienta.2015.09.021.
  • [2] Calvo P, Nelson L, Kloepper JW. Agricultural uses of plant biostimulants. Plant Soil. 2014;383:3-41. DOI: 10.1007/s11104-014-2131-8.
  • [3] Alam MZ, Braun G, Norrie J, Hodges DM. Ascophyllum extract application can promote plant growth and root yield in carrot associated with increased root-zone soil microbial activity. Can J Plant Sci. 2014;94:337-48. DOI: 10.4141/CJPS2013-135.
  • [4] Szczepanek M, Ochmian I, Wszelaczyńska E, Pobereżny J, Keutgen AJ, Szczepanek M, et al. Effect of biostimulants and storage on the content of macroelements in storage roots of carrot. J Elem. 2015;20:1021-31. DOI: 10.5601/jelem.2015.20.1.768.
  • [5] Szczepanek M, Wilczewski E, Pobereżny J, Wszelaczyńska E, Ochmian I. Carrot root size distribution in response to biostimulant application. Acta Agric Scand Sect B - Soil Plant Sci. 2017;67:334-9. DOI: 10.1080/09064710.2017.1278783.
  • [6] Sanders DC, Ricotta JA, Hodges L. Improvement of carrot stands with plant biostimulants and fluid drilling. HortScience. 1990;25:181-3. DOI: 10.21273/HORTSCI.25.2.181.
  • [7] Grabowska A, Kunicki E, Sękara A, Kalisz A, Wojciechowska R. The effect of cultivar and biostimulant treatment on the carrot yield and its quality. Veg Crop Res Bull. 2012;77:37-48. DOI: 10.2478/v10032-012-0014-1.
  • [8] Kwiatkowski CA, Kołodziej B, Woźniak A. Yield and quality parameters of carrot (Daucus carota L.) roots depending on growth stimulators and stubble crops. Acta Sci Pol Hortorum Cultus. 2013;12:55-68. Available from: http://www.hortorumcultus.actapol.net/pub/12_5_55.pdf
  • [9] Kwiatkowski CA, Haliniarz M, Kołodziej B, Harasim E, Tomczyńska-Mleko M. Content of some chemical components in carrot (Daucus carota L.) roots depending on growth stimulators and stubble crops. J Elem. 2015;20:933-43. DOI: 10.5601/jelem.2014.19.4.812.
  • [10] Taha SS, Abdelaziz ME. Effect of different concentrations of seaweed extract on growth, yield and quality of two carrot (Daucus carota L.) cultivars. Curr Sci Int. 2015;4:750-9. Available from: http://www.curresweb.com/csi/csi/2015/750-759.pdf.
  • [11] Polk C. Biological effects of low-level low-frequency electric and magnetic fields. IEEE Trans Educ. 1991;34:243-9. DOI: 10.1109/13.85082.
  • [12] Efthimiadou A, Katsenios N, Karkanis A, Papastylianou P, Triantafyllidis V, Travlos I, et al. Effects of presowing pulsed electromagnetic treatment of tomato seed on growth, yield, and lycopene content. Sci World J. 2014;ID 369745. DOI: 10.1155/2014/369745.
  • [13] Dorna H, Górski R, Szopińska D, Tylkowska K, Jurga J, Wosiński S, et al. Effects of a permanent magnetic field together with the shielding of an alternating electric field on carrot seed vigour and germination. Ecol Chem Eng S. 2010;17:53-61. Available from: https://drive.google.com/file/d/1IfsFlFVf3-2vO1OlkNuu09220UjUAwWs/view.
  • [14] da Silva JAT, Dobranszki J. Magnetic fields: how is plant growth and development impacted? Protoplasma 2016;253:231-48. DOI: 10.1007/s00709-015-0820-7.
  • [15] Cieśla A, Kraszewski W, Skowron M, Syrek P. The effects of magnetic fields on seed germination. Prz Elektrotechniczny 2015;91:125-8. DOI: 10.15199/48.2015.01.25.
  • [16] Reina FG, Pascual LA, Fundora IA. Influence of a stationary magnetic field on water relations in lettuce seeds. Part II: experimental results. Bioelectromagnetics. 2001;22:596-602. DOI: 10.1002/bem.89.
  • [17] Vashisth A, Nagarajan S. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J Plant Physiol. 2010;167:149-56. DOI: 10.1016/j.jplph.2009.08.011.
  • [18] Martinez E, Carbonell MV, Amaya JM. A static magnetic field of 125 mT stimulates the initial growth stages of barley (Hordeum vulgare L.). Electro- and Magnetobiology. 2000;19:271-7. DOI: 10.1081/JBC-100102118.
  • [19] Vashisth A, Nagarajan S. Exposure of seeds to static magnetic field enhances germination and early growth characteristics in chickpea (Cicer arietinum L.). Bioelectromagnetics. 2008;29:571-8. DOI: 10.1002/bem.20426.
  • [20] Occhipinti A, De Santis A, Maffei ME. Magnetoreception: an unavoidable step for plant evolution? Trends Plant Sci. 2014;19:1-4. DOI: 10.1016/j.tplants.2013.10.007.
  • [21] Binhi VN. Theoretical concepts in magnetobiology. Electro- Magnetobiol. 2001;20:43-58. DOI: 10.1081/JBC-100103159.
  • [22] Rochalska M, Grabowska-Topczewska K, Mackiewicz A. Influence of alternating low frequency magnetic field on improvement of seed quality. Int Agrophysics. 2011;25:265-9. Available from: http://www.old.international-agrophysics.org/artykuly/international_agrophysics/IntAgr_2011_25_3_265.pdf.
  • [23] Maffei ME. Plant responses to electromagnetic fields. In: Greenebaum B, Barnes F, editors. Biol. Med. Asp. Electromagn. fields. Fourth ed. Boca Raton: CRC Press, Taylor Francis Group; 2019: 89-109. DOI: 10.1201/9781315221557.
  • [24] Lednev VV. Possible mechanism for the influence of weak magnetic fields on biological systems. Bioelectromagnetics. 1991;12:71-5. DOI: 10.1002/bem.2250120202.
  • [25] Balakhnina T, Bulak P, Nosalewicz M, Pietruszewski S, Włodarczyk T. The influence of wheat Triticum aestivum L. seed pre-sowing treatment with magnetic fields on germination, seedling growth, and antioxidant potential under optimal soil watering and flooding. Acta Physiol Plant. 2015;37:59. DOI: 10.1007/s11738-015-1802-2.
  • [26] Podleśna A, Bojarszczuk J, Podleśny J. Effect of pre-sowing magnetic field treatment on some biochemical and physiological processes in Faba bean (Vicia faba L. spp. Minor). J Plant Growth Regul. 2019;38:1153-60. DOI: 10.1007/s00344-019-09920-1.
  • [27] Labes MM. A possible explanation for the effect of magnetic fields on biological systems. Nature. 1966;211:968. DOI: 10.1038/211968a0.
  • [28] Ueno S. Biological effects of magnetic fields. IEEE Trans J Magn Japan. 1992;7:580-5. DOI: 10.1109/TJMJ.1992.4565451.
  • [29] Górski R, Dorna H, Rosińska A, Szopińska D, Wosiński S. Effects of electromagnetic fields and their shielding on the quality of carrot (Daucus carota L.) seeds. Ecol Chem Eng S. 2019;26:785-95. DOI: 10.1515/eces-2019-0055.
  • [30] Martínez E, Flórez M, Maqueda R, Carbonell MV, Amaya JM. Pea (Pisum sativum L.) and lentil (Lens culinaris, Medik) growth stimulation due to exposure to 125 and 250 mT stationary fields. Polish J Environ Stud. 2009;16:657-63. Available from: http://www.pjoes.com/Pea-Pisum-sativum-L-and-Lentil-Lens-culinaris-r-nMedik-Growth-Stimulation-Dueto,88281,0,2.html.
  • [31] Ćirković S, Bačić J, Paunović N, Popović TB, Trbovich AM, Romčević N, et al. Influence of 340 mT static magnetic field on germination potential and mid-infrared spectrum of wheat. Bioelectromagnetics. 2017;38:533-40. DOI: 10.1002/bem.22057.
  • [32] Aladjadjiyan A. The use of physical methods for plant growing stimulation in Bulgaria. J Cent Eur Agric. 2007;8:369-80. Available from: https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=30699.
  • [33] Asgharipour MR, Omrani MR. Effects of seed pretreatment by stationary magnetic fields on germination and early growth of lentil. Aust J Basic Appl Sci. 2011;5:1650-4. Available from: http://www.ajbasweb.com/old/ajbas/2011/December-2011/1650-1654.pdf.
  • [34] Iimoto M, Watanabe K, Fujiwara K. Effects of magnetic flux density and direction of the magnetic field on growth and CO2 exchange rate of potato plantlets in vitro. Acta Hortic. 1996:606-10. DOI: 10.17660/ActaHortic.1996.440.106.
  • [35] Turker M, Temirci C, Battal P, Erez ME. The effects of an artificial and static magnetic field on plant growth, chlorophyll and phytohormone levels in maize and sunflower plants. Phyt - Ann Rei Bot. 2007;46:271-84. Available from: https://www.zobodat.at/pdf/PHY_46_2_0271-0284.pdf.
  • [36] Dicarlo AL, Hargis MT, Penafiel LM, Litovitz TA. Short-term magnetic field exposures (60 Hz) induce protection against ultraviolet radiation damage. Int J Radiat Biol. 1999;75:1541-9. DOI: 10.1080/095530099139142.
  • [37] Kataria S, Baghel L, Guruprasad KN. Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean. Biocatal Agric Biotechnol. 2017;10:83-90. DOI: 10.1016/j.bcab.2017.02.010.
  • [38] De Souza A, Garcí D, Sueiro L, Gilart F, Porras E, Licea L. Pre-sowing magnetic treatments of tomato seeds increase the growth and yield of plants. Bioelectromagnetics. 2006;27:247-57. DOI: 10.1002/bem.20206.
  • [39] Lewandowska S, Michalak I, Niemczyk K, Detyna J, Bujak H, Arik P. Influence of the static magnetic field and algal extract on the germination of soybean seeds. Open Chem. 2019;17:516-25. DOI: 10.1515/chem-2019-0039.
  • [40] Maffei ME. Magnetic field effects on plant growth, development, and evolution. Front Plant Sci. 2014;5:445. DOI: 10.3389/fpls.2014.00445.
  • [41] Michalak I, Lewandowska S, Niemczyk K, Detyna J, Bujak H, Arik P, et al. Germination of soybean seeds exposed to the static/alternating magnetic field and algal extract. Eng Life Sci. 2019;19:986-99. DOI: 10.1002/elsc.201900039.
  • [42] Tretiak O, Blümler P, Bougas L. Variable single-axis magnetic-field generator using permanent magnets. AIP Adv. 2019;9:115312. DOI: 10.1063/1.5130896.
  • [43] Qiu J, Liu X, Hu Z, Chang Q, Gao Y, Yang J, et al. Multi-directional electromagnetic vibration energy harvester using circular Halbach array. AIP Adv. 2017;7:056672. DOI: 10.1063/1.4978403.
  • [44] Michalak I, Lewandowska S, Detyna J, Olsztyńska-Janus S, Bujak H, Pacholska P. The effect of macroalgal extracts and near infrared radiation on germination of soybean seedlings: preliminary research results. Open Chem. 2018;16:1066-76. DOI: 10.1515/chem-2018-0115.
  • [45] Rathore SS, Chaudhary DR, Boricha GN, Ghosh A, Bhatt BP, Zodape ST, et al. Effect of seaweed extract on the growth, yield and nutrient uptake of soybean (Glycine max) under rainfed conditions. South African J Bot. 2009;75:351-5. DOI: 10.1016/j.sajb.2008.10.009.
  • [46] Lodhi KK, Choubey NK, Dwivedi SK, Pal A, Kanwar PC. Impact of seaweed saps on growth, flowering behaviour and yield of soybean [Glycine max (L.) Merrill.]. Bioscan. 2015;10:479-83. Available from: http://www.thebioscan.in/Journal%20Supplement/101Sup45%20K.%20K.%20LODHI.pdf.
  • [47] Michalak I, Mironiuk M, Marycz K. A comprehensive analysis of biosorption of metal ions by macroalgae using ICP-OES, SEM-EDX and FTIR techniques. PLoS One. 2018;13:e0205590. DOI: 10.1371/journal.pone.0205590.
  • [48] Marycz K, Michalak I, Kocherova I, Marędziak M, Weiss C. The Cladophora glomerata enriched by biosorption process in Cr(III) improves viability, and reduces oxidative stress and apoptosis in equine metabolic syndrome derived adipose mesenchymal stromal stem cells (ASCs) and their extracellular vesicles (MV’s). Mar Drugs. 2017;15:385. DOI: 10.3390/md15120385.
  • [49] Jannin L, Arkoun M, Etienne P, Laîné P, Goux D, Garnica M, et al. Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. J Plant Growth Regul. 2013;32:31-52. DOI: 10.1007/s00344-012-9273-9.
  • [50] Alobwede E, Leake JR, Pandhal J. Circular economy fertilization: Testing micro and macro algal species as soil improvers and nutrient sources for crop production in greenhouse and field conditions. Geoderma. 2019;334:113-23. DOI: 10.1016/j.geoderma.2018.07.049.
  • [51] Nicolle C, Simon G, Rock E, Amouroux P, Rémésy C. Genetic variability influences carotenoid, vitamin, phenolic, and mineral content in white, yellow, purple, orange, and dark-orange carrot cultivars. J Am Soc Hortic Sci. 2004;129:523-9. DOI: 10.21273/JASHS.129.4.0523.
  • [52] Sakhnini L. Influence of Ca2+ in biological stimulating effects of AC magnetic fields on germination of bean seeds. J Magn Magn Mater. 2007;310:e1032-4. DOI: 10.1016/j.jmmm.2006.11.077.
  • [53] Shine MB, Guruprasad KN, Anand A. Enhancement of germination, growth, and photosynthesis in soybean by pre-treatment of seeds with magnetic field. Bioelectromagnetics. 2011;32:474-84. DOI: 10.1002/bem.20656.
  • [54] Torres J, Socorro A, Hincapié E. Effect of homogeneous static magnetic treatment on the adsorption capacity in maize seeds (Zea mays L.). Bioelectromagnetics. 2018;39:343-51. DOI: 10.1002/bem.22120.
  • [55] Pietruszewski S, Kania K. Effect of magnetic field on germination and yield of wheat. Int Agrophysics. 2010;24:297-302. Available from: http://www.international-agrophysics.org/Effect-of-magnetic-field-on-germination-and-yield-of-wheat,106385,0,2.html.
  • [56] Kavi PS. The effect of magnetic treatment of soybean seed on its moisture absorbing capacity. Sci Cult. 1977;43:405-406. Available from: https://agris.fao.org/agris-search/search.do?recordID=IN19780278775.
  • [57] Martinez E, Carbonell MV, Flórez M, Amaya JM, Maqueda R. Germination of tomato seeds (Lycopersicon esculentum L.) under magnetic field. Int Agrophysics. 2009;23:45-9. Available from: http://www.international-agrophysics.org/Germination-of-tomato-seeds-Lycopersicon-esculentum-L-under-magnetic-field,106414,0,2.html.
  • [58] Anand A, Nagarajan S, Verma APS, Joshi DK, Pathak PC, Bhardwaj J. Pre-treatment of seeds with static magnetic field ameliorates soil water stress in seedlings of maize (Zea mays L.). Indian J Biochem Biophys. 2012;49:63-70. Available from: https://pubmed.ncbi.nlm.nih.gov/22435146/.
  • [59] Boe AA, Salunkhe DK. Effects of magnetic fields on tomato ripening. Nature. 1963;199:91-2. https://www.nature.com/articles/199091a0.
  • [60] Carbonell MV, Martinez E, Amaya JM. Stimulation of germination in rice (Oryza sativa L.) by a static magnetic field. Electro- Magnetobiol. 2000;19:121-8. DOI: 10.1081/JBC-100100303.
  • [61] Radhakrishnan R, Kumari BDR. Influence of pulsed magnetic field on soybean (Glycine max L.) seed germination, seedling growth and soil microbial population. Indian J Biochem Biophys. 2013;50:312-7. Available from: https://pubmed.ncbi.nlm.nih.gov/24772951/.
  • [62] Rochalska M. Influence of frequent magnetic field on chlorophyll content in leaves of sugar beet plants. Nukleonika. 2005;50:S25-8. Available from: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BUJ6-0005-0019.
  • [63] Shine MB, Guruprasad K, Anand A. Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean. Bioelectromagnetics. 2012;33:428-37. DOI: 10.1002/bem.21702.
  • [64] Adey WR. Biological effects of electromagnetic fields. J Cell Biochem. 1993;51:410-6. DOI: 10.1002/jcb.2400510405.
  • [65] Strasserf RJ, Srivastava A. Polyphasic chlorophyll a fluorescence transient in plants and cyanobacteria. Photochem Photobiol. 1995;61:32-42. DOI: 10.1111/j.1751-1097.1995.tb09240.x.
  • [66] Govindje E. Sixty-three years since Kautsky: Chlorophyll a fluorescence. Aust J Plant Physiol. 1995;22:131-60. DOI: 10.1071/PP9950131.
  • [67] Albert KR, Mikkelsen TN, Ro-Poulsen H. Effects of ambient versus reduced UV-B radiation on high arctic Salix arctica assessed by measurements and calculations of chlorophyll a fluorescence parameters from fluorescence transients. Physiol Plant. 2005;124:208-26. DOI: 10.1111/j.1399-3054.2005.00502.x.
  • [68] Jan L, Fefer D, Košmelj K, Gaberščik A, Jerman I. Geomagnetic and strong static magnetic field effects on growth and chlorophyll a fluorescence in Lemna minor. Bioelectromagnetics. 2015;36:190-203. DOI: 10.1002/bem.21898.
  • [69] Srikanth D. Influence of magnetic and electric field on germination attributes of chilli (Capsicum annum L.) seeds. Int J Pure Appl Biosci. 2018;6:496-501. DOI: 10.18782/2320-7051.6723.
  • [70] Iqbal M, ul Haq Z, Malik A, Ayoub CM, Jamil Y, Nisar J. Pre-sowing seed magnetic field stimulation: A good option to enhance bitter gourd germination, seedling growth and yield characteristics. Biocatal Agric Biotechnol. 2016;5:30-7. DOI: 10.1016/j.bcab.2015.12.002.
  • [71] Torres J, Aranzazu-Osorio J, Restrepo-Parra E. Favourable and unfavourable effect of homogeneous static magnetic field on germination of Zea mays L (maize) seeds. J Agric Sci. 2019;11:90. DOI: 10.5539/jas.v11n2p90.
  • [72] Es’kov EK, Darkov AV. Consequences of high-intensity magnetic effects on the early growth processes in plant seeds and the development of honeybees. Biol Bull Russ Acad Sci. 2003;30:512-6. DOI: 10.1023/A:1025858905362.
  • [73] Bhatnagar D, Deb AR. Some aspects of pregermination exposure of wheat seeds to magnetic fields. II. Effect on some physiological process. Seed Res (New Delhi). 1977;5:129-37. Available from: https://www.researchgate.net/publication/287181702_Some_aspects_of_pregermination_exposure_of_wheat_seeds_to_magnetic_field_II_Effect_on_some_physiological_processes.
  • [74] Zhadin MN. Review of russian literature on biological action of DC and low-frequency AC magnetic fields. Bioelectromagnetics. 2001;22:27-45. DOI: 10.1002/1521-186x(200101)22:1<27::aid-bem4>3.0.co;2-2.
  • [75] Barnes FS. Mechanisms for electric and magnetic fields effects on biological cells. IEEE Trans Magn. 2005;41:4219-24. DOI: 10.1109/TMAG.2005.855480.
  • [76] Kavi PS. The effect of non-homogeneous gradient magnetic field susceptibility values in situ ragi seed material. Mysore J Agric Sci. 1983;17:121-3. Available from: https://www.researchgate.net/publication/288043147_The_effect_of_non-homogeneous_gradient_magnetic_field_susceptibility_values_in_situ_ragi_seed_material.
  • [77] Aceto H, Tobias C, Silver I. Some studies on the biological effects of magnetic fields. IEEE Trans Magn. 1970;6:368-73. DOI: 10.1109/TMAG.1970.1066813.
Uwagi
EN
The research concerning algal extract was co-financed by statutory activity subsidy in 2019/2020 from the Polish Ministry of Science and Higher Education for the Faculty of Chemistry of Wroclaw University of Science and Technology (Department of Advanced Material Technologies), No 8201003902 (K26W03D05).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9722ebb8-a03d-481f-8e21-6afa06c49400
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.