TRANSINAV

http://www.transnav.eu

the International Journal
on Marine Navigation

and Safety of Sea Transportation

Volume 18
Number 2
June 2024

DOI: 10.12716/1001.18.02.01

Design of Software for Underwater Vehicles Operating

in a Swarm

T. Praczyk & K. Naus
Polish Naval Academy, Gdynia, Poland

ABSTRACT: The paper presents a design of software for underwater vehicles constructed as part of the
European Defence Agency project entitled SABUVIS II. Since the aim of the project is to develop a technology
for a swarm of underwater vehicles, the software of these vehicles, in addition to the functionalities typical for
each autonomous underwater vehicle, must have functionalities dedicated to the swarm of vehicles. The paper
presents the design of both the vehicle-side and the shoreside part of the software.

1 INTRODUCTION

Autonomous Underwater Vehicles (AUV) are
underwater robots that operate on their own without
human support. Thanks to the ability to operate
independently, they can replace people in the
implementation of dangerous underwater missions,
for example, during work related to the maintenance
of oil rigs or underwater pipelines.

These vehicles can also operate as part of teams or
swarms. In the first case, the vehicles usually operate
at a distance from each other and the common task of
the team is divided into separate subtasks that can be
performed independently by each team member.
Vehicles operating in teams must also usually be fully
equipped with all navigation and sensory devices,
which results from the fact that they operate at a
certain distance from other vehicles and have to
manage on their own.

Another option is to operate in a swarm. In this
case, the vehicles form a closely cooperating group,
moving in close proximity to each other. This
approach means that a swarm of vehicles can be
considered as a dispersed single underwater vehicle,

or a vehicle-swarm, consisting of component vehicles,
each of which may be responsible for a different part
of the task of the vehicle-swarm.

Distribution of competences over many different
vehicles makes individual vehicles in a swarm
cheaper, smaller, lighter and easier to operate than
super-vehicles operating on their own. The problem,
however, in this case is the organization of
cooperation between the vehicles so that they can
really be considered as one compact organism.

The main objective of European Defense Agency
project category B entitled “Swarm of Autonomous
Biomimetic Underwater Vehicles” (SABUVIS II) to
which the current paper is devoted is to design and
implement a swarm of closely cooperating AUVs,
including the leaders that are responsible for global
swarm navigation and the followers responsible for a
specific swarm task.

The cooperation of vehicles within a swarm, as
mentioned before, is a serious challenge. In order for
the vehicles to cooperate with each other, operate
close to each other in a specific formation, certain

273

conditions must be met. These conditions apply to
both the hardware and software.

When it comes to the hardware, it is important to
equip the vehicles with sensors that enable
omnidirectional observation of the vehicle
surroundings so that the vehicles are able to track
other vehicles in the swarm and detect obstacles. The
necessary equipment of vehicles is also appropriate
navigation. In the case of the leader, these must be
systems that allow navigation over long distances,
while in the case of followers, simpler systems
operating over short distances are sufficient.

In the case of the software part, it is important to
handle all hardware devices and on-board hardware
systems, provide the vehicle with information about
the external environment, control vehicles at high and
low-level, control vehicle in an autonomous as well as
remote control mode, and handle emergency
situations.

The paper presents a software architecture design
for vehicles built in the SABUVIS II project. The
software consists of a vehicle-side part and a
shoreside part. The presented architecture assumes
the use of MOOS-IvP [1] which is a set of open source
C++ modules for providing autonomy on robotic
platforms, in particular autonomous marine vehicles.

2 DESIGN OF HIGH-LEVEL CONTROL SYSTEM
INCLUDING VEHICLE SOFTWARE
COMPONENTS

The high-level control system (HLCS) is understood
in the paper as a software system which makes high-
level decisions regarding movement of the vehicle,
e.g. turn right, increase speed, go down. The high-
level decisions are then transformed into low-level
decisions for vehicle drive, rudder and other
executive elements. The task of low-level decisions is
to reach a desirable state of the vehicle in the form of
desirable values of vehicle parameters, i.e. heading,
depth, and speed.

In addition to the HLCS working on the vehicle,
there is also another system, called Deck Unit (DU),
which closely cooperates with the HLCS and which is
situated on the shoreside. Both HLCS and DU are
design in the same technology, namely, based on
MOOS IvP framework [1].

MOOS IvP is a set of open-source C++ modules for
providing autonomy on robotic platforms, in
particular ~autonomous marine vehicles. The
abbreviation MOOS comes from “Mission Oriented
Operating Suite" whereas the abbreviation IvP stands
for "Interval Programming”.

In the paper, the high-level architecture of MOOS
IvP software for shoreside and vehicle-side is
specified. The architecture is presented in the form of
list of MOOS IvP applications which constitute the
basic component of each MOOS IvP architecture and
the network of communication links between the
components. Application MOOSDB plays a central
role in both architectures being a communication
medium between most applications belonging to the
same MOOS community

274

The vehicle-side architecture is depicted in Figure
1. It consists of eighteen MOOS IvP applications, i.e.:
MOOSDB, pJANUS-MOQOSBridge, pShare, pLow-
LevelSoftBridge, pMission, pRemote, pHelmIvP,
pNodeReporter, pNavigation, pNavDevicesHandlers,
pCamera, pEchosounder, pSonar, pBMS, pLogger,
pGenVehicleState, pContactMgrVv20, and
pObstacleMgr. All the applications are outlined
below.

In-Swarm Localization
Sensors, Obstacle Avoidance Sensors
(e g. sonar, camera, echosounder)

pEchosounder / Bartenes

pSonar
pBMS
”
,,'/
W‘ - _ - pGenVehicleState
/'/ N

pConlaclMngZ() ‘ pJANUS-
MOOSBridge
pObstacleMagr v

pLow-LevelSoftBridge

Low-level T
control/Vehicle |« |
drive

Navigation Devices
(e.g. GPS, DVL, FOG, pressure sensor, IMU)

pCamera

[pNavigation |<| pNavDevicesHandlers |

pNodeReporter \\
\\\\
pHelmivP B ™~

Communication Devices
(Hydromodems WiFi)

Figure 1. Vehicle-side software architecture

2.1 MOOSDB

As already mentioned, MOOSDB is a communication
medium between other MOOS IvP applications. It
stores information for other applications in the form
of double or string variables. Each variable has a
unique name for identification and the content. Other
applications can be both producers and consumers of
the information — they can produce some information
by directly writing/updating/sending to MOOSDB a
value of named variable (operation Notify in C++ code
of an application) or consume information by
subscribing for a selected variables (operation
Register in C++ code of an application). Subscription
for a variable means that a subscribing application is
periodically fed with, say, mails including a list of
variable-name, variable-value pairs.

22 pJANUS-MOOSBridge

This application handles acoustic communication link
from/to the vehicle. It reads/writes messages from/to
hydro-modems via JANUS intermediate layer of the
acoustic communication system. The messages which
are to be sent (selected MOOSDB variables) are
appropriately encoded in the form previously defined
data structures and then passed on to the JANUS
layer. In turn, messages received from JANUS are
decoded from the structures and then send to
MOQOSDB as variables.

There are at least two variables sent from the
vehicle to the shoreside or the leader vehicle , i.e.
NODE_REPORT _LOCAL / NODE_REPORT and
REPORT_APP_LOCAL / REPORT_APP. The first
variable stores complete information about vehicle
including such parameters as: xy),
(latitude,longitude), depth, speed and other available
parameters. All the parameters are encoded as

parameter-name/parameter-value pairs, converted
into strings and combined. In turn,
REPORT_APP_LOCAL / REPORT_APP store
information about state of all key applications in
MOOS community which is run on main vehicle
computer. The state of each app is expressed in the
form of a single integer which can be then converted
into binary value.

NODE_REPORT_LOCAL /
REPORT_APP_LOCAL are variables relating to the
own vehicle whereas NODE_REPORT /
REPORT_APP are in fact NODE_REPORT_LOCAL /
REPORT_APP_LOCAL variables read by the
shoreside and renamed into NODE_REPORT /
REPORT_APP.

2.3 pShare

The difference between pJANUS-MOOSBridge and
pShare is a communication channel - pJANUS-
MOQOSBridge uses acoustic underwater channel
whereas pShare works on the surface and it uses WiFi
channel. In effect, pShare can send more information
in shorter time than pJANUS-MOOSBridge. For that
reason, pShare, in addition to NODE_REPORT and
REPORT_APP sends also APPCAST variable which
stores detailed state of a selected MOOS IvP app. This
app has to be indicated by APPCAST_REQ variable
which is sent from the shoreside by an appcast
viewer, e.g. pMarineViewer.

2.4 pLow-LevelSoftBridge

This app is meant for communication with low-level
control software which according to assumptions
made in the project works on other computer than
high-level control system or even on micro-controller.
The task of pLow-LevelSoftBridge is to send desired
motion parameters of the vehicle stored in variables
DESIRED_HEADING, DESIRED_SPEED and
DESIRED_DEPTH to low-level software whose task is
to convert the parameters into commands for a vehicle
drive.

2.5 pMission

This app manages missions of the vehicles, that is,
starts and stops mission, and sets parameters of the
mission such as: sequence of waypoints, march speed,
type of formation, distances between vehicles, depth,
security region, max depth, max distance. Moreover,
it also sends to MOOSDB a report with mission status,
that is, whether the mission is ready, run, or stopped.
All the information about the mission which is
processed (parsed) by pMission is sent in MISSION
variable which is a string with parameter-
name/parameter-value pairs separated with commas.

Each time before the mission is started pMission
examines the state of the vehicle. If the state makes it
possible to start the mission, it is started and state of
the vehicle is appropriately updated through
changing MOOS variables which collectively
determine the state. Otherwise, a message is sent to

the shoreside with the information about reasons of
start mission fail.

2.6 pRemote

This app is a counterpart of pMission with respect to
variable REMOTE-, and remote-control operation
mode. pRemote reads REMOTE variable from
MOOQOSDB, parses it, and sends appropriate
commands (MOOS variables) to low-level control or
activates vehicle behavior responsible for moving the
vehicle to a point indicated in REMOTE variable.

Like pMission, also pRemote examines the state of
the vehicle before activating a remote-control action.
Activation or refusal of the action is associated with
changing the state of the vehicle or a message to the
shoreside with the information about reasons of
remote-control action fail.

2.7 pHelmlvP

This is a standard MOQOS IvP app which is meant for
making decisions in autonomous mode. The key
element of pHelmIvP is a set of behaviors which are
run if the vehicle is in an operational mode assigned
to each behavior. Behaviors activated in the same
mode generate vehicle actions which are reduced by
pHelmIvP (the so-called IvP Solver which is a
component of pHelmIvP) to a single action through a
process of behavior reconciliation. The same
behaviors can have different instances activated in
different vehicle modes.

The list of behaviors used by pHelmIvP includes
both behaviors available in MOOS IvP and behaviors
specific for SABUVIS II project:

1. OpRegion behavior — this is a standard MOOS IvP
behavior which provides different safety
functionalities, that is: (i) “do not go beyond a
region” specified by a convex polygon being the
parameter of the behavior, (ii) “do not operate
longer than” a time limit specified in a behavior
parameter, (iii) “do not go down deeper than” a
depth limit specified in a behavior parameter. If
some safety parameters are exceeded by the
vehicle, pHelmIvp enters the mode which stops
the vehicle.

OpRegion behavior will be active during the whole

operation of each vehicle. The parameters of the

behavior will be determined at the very beginning
of the mission by the operator and they will
remain constant.

2. ConstantDepth behavior — this is also a standard
MOOS IvP behavior which as its name implies
cares about keeping the vehicle on a constant
depth which is a parameter of the behavior. Like
OpRegion behavior also ConstantDepth one will
be active during the whole vehicle mission. This
time, however, parameters of the behavior can
change, depending on the swarm trajectory
defined by the operator.

3. MaxDepth behavior — this standard MOOS IvP
behavior which does not “deactivate” pHelmIvP
like OpRegion. It keeps the vehicle above a
threshold which is a parameter of the behavior.
Like the above behaviors, also MaxDepth will be

275

active during the whole vehicle mission for one
invariable depth threshold.

4. AvoidCollision behavior — this is a standard MOOS
IvP behavior which controls vehicle heading in
case of an obstacle on the vehicle way. Maneuvers
of the vehicle are made only on the horizontal
plane. The obstacles are in the form of convex
polygons which group obstacle point detected by
vehicle sensors like sonar. AvoidCollision behavior
will have to be used very carefully because in the
swarm there will be a risk to mistake other swarm
members for obstacles.

This behavior will be used on the vehicles if
sensors are able to differentiate other vehicles from
true obstacles.

5. AvoidCollisionUpDown behavior - this is also

collision avoidance behavior which however
controls depth of the vehicle. It is assumed the
collision avoidance behavior will be made by three
different behaviors, ie. ConstantDepth,
AvoidCollision, and AvoidCollisionUpDown. The
first behavior will keep the vehicle close to one
predefined depth. If an obstacle is detected on the
way, at the safe distance from the vehicle,
AvoidCollisionUpDown is activated which forces
the vehicle to decrease depth (go up). If the vehicle
passes over the obstacle, ConstantDepth will
“pull” the vehicle back to the desired depth.
However, if the obstacle is close to the vehicle, for
example, it reaches the surface and, in
consequence, it cannot be avoided by “jumping”
over it, then AvoidCollision is activated.
Like AvoidCollision also this behavior will be used
on the vehicles if sensors are able to differentiate
other vehicles from true obstacles.
AvoidCollisionUpDown behavior is a new
behavior which will be implemented within the
project.

6. KeepFormation behavior — this behavior is the main
objective of the project. The task of this behavior is
to keep a follower vehicle in the swarm. Its
implementation will depend on the specific swarm
concept. For example, keeping the formation by
following the leader in the so-called fixed
formation will be require a different algorithm
than long cloud formation. The task of this
behavior will be to control heading and speed of
the vehicle based on the information derived from
vehicle sensors and the distance to the leader
acquired via communication system.

As already mentioned, this behavior will be only
applied on follower vehicles.

7. NewWayPoint behavior — this behavior will be a
modification of a standard MOOS IvP behavior
meant for leading the vehicle along a path defined
by a sequence of (x,y) way-points. In contrast to
the standard behavior, NewWayPoint will take
into account the sea current which can push the
vehicle away from the predefined path. In order to
avoid such situation, NewWayPoint will
appropriately adjust vehicle heading and speed to
the distance to the path. This behavior will be
applied mainly on the leader vehicles, although,
follower vehicles will be also equipped with this
behavior.

276

2.8 pNodeReporter

pNodeReporter is a core MOOS IvP app which is
meant for generating NODE_REPORT_LOCAL
variable storing all the key information about the state
of the vehicle. Each piece of the information is in the
form of parameter-name/parameter-value pair
encoded as a string. All the pieces are combined into a
single variable by separating them with commas.
NODE_REPORT_LOCAL should be read by all
communication apps, ie. pShare and pJANUS-
MOOQOSBridge, and sent as NODE_REPORT variables
to external nodes. pShare reports are sent directly to
the shoreside (when on the surface), whereas,
pPJANUS-MOQOSBridge reports are sent either to the
shoreside (leader) or to the leader (followers).

Example NODE_REPORT_LOCAL is given in
Figure 2.

Figure 2. Example NODE_REPORT

2.9 pNavigation

This app will be responsible for fixing navigation
parameters of the vehicle including (x,y) position,
latitude, longitude, depth, heading, pitch, roll, and
speed. The parameters should be published in
MOQOSDB as appropriate variables, e.g. NAV_X,
NAV_Y, NAV_DEPTH, NAV_HEADING,
NAV_SPEED, NAV_LAT, NAV_LON, NAV_ROLL,
NAV_PITCH. To fix the parameters, pNavigation will
be fed with different navigation devices and sensors
like IMU, DVL, FOG, pressure sensor, GNSS, satellite
compass.

pNavigation will work according to different
algorithms. The simplest of them will be Extended
Kalman Filter. It will be also possible to equip
follower vehicles with deep learning navigation
system in which the position and spatial orientation of
the vehicle will be produced by deep learning neural
network supplied with the set of IMUs.

2.10 pNavDevicesHandlers

This is a single app or a set of apps. Their task is to
provide information generated by different navigation
devices/sensors to pNavigation. For the purpose of
high speed of processing in pNavigation, the
communication between pNavDevicesHandlers will
be performed without participation of MOOSDB as a
communication medium. To this end, communication
mechanisms provided by operating system, for
example, sockets will be applied.

211 pCamera

The task of this app is to handle a camera and to
provide the whole system the information about
noticed objects such as other vehicles and obstacles.
This app is crucial for collision avoidance and keeping
formation behaviors. In order to fulfill the task,

pCamera has to implement video processing
algorithms which should be able to detect and classify
visible objects. Since the algorithms require time-
consuming calculations, the implementation of
pCamera should consider processing on GPU.

Camera should publish two variables, i.e.
TRACKED_FEATURE and NODE_REPORT. The first
variable corresponds to noticed obstacles (position of
obstacle in local coordinate system) whereas the
second variable corresponds to other vehicles
detected.

2.12 pEchosounder

This is an app for handling echosounder(s) and for
providing the system the information about distance
to the bottom and possible objects above the vehicle.

2.13 pSonar

This app is a counterpart of pCamera, however, with
respect to sonar which is the sensor of longer range
than camera which makes it the primary sensor when
navigating in the swarm. Like pCamera, pSonar has to
be able to detect and classify objects visible in sonar
images. What is more, it has to able to differentiate
echoes coming from the sea bottom and sea surface. In
order for pSonar to be able to fulfill its tasks, it has to
implement advanced video stream processing
algorithms on GPU.

Like pCamera, also pSonar should publish two
variables, i.e. TRACKED_FEATURE and
NODE_REPORT. The first variable corresponds to
noticed obstacles (position of obstacle in local
coordinate system) whereas the second variable
corresponds to other vehicles detected.

2.14 pBMS

This is an app for handling batteries. It has to provide
information about all faults, analyze the situation
regarding energy consumption, and notify the system
if there is not enough energy to continue the mission.
The mentioned information should be published to
MOQOSDB in the variable REPORT_BMS.

2.15 pLogger

This standard MOOS IvP app is meant for recording
selected publications to MOOSDB during the whole
MOQOS session. It is an app essential from the point of
view of post-session analysis. The app is configurable,
that is, it allows for synchronous and asynchronous
logging and selection of MOOS variables which are to
be logged.

2.16 pGenVehicleState

It is crucial app for safety of the vehicle. It is assumed
that selected MOOS apps (the ones which are
necessary for the vehicle to operate) periodically
publish their state to MOOSDB in the form of integer
variable REPORT_(APP) where APP is a label of the

app. pGenVehicleState monitors the state of all apps,
generates one cumulative report
(REPORT_APP_LOCAL) for the shoreside (state of all
apps plus current action performed by the vehicle, e.g.
remote control: turn right, mission, returning to a
specified point, waiting for orders, breakdown) and
appropriately reacts if the state of the vehicle is
insufficient with respect to performed mission/action.

2.17 pContactMgrV20

This is a standard MOOS IvP app whose task is to
generate alerts regarding other vehicles visible
around. The information about these vehicles is given
in NODE_REPORT variable which can be published
by vehicle sensors (pCamera, pSonar) and
communication apps (pShare, pJANUS-
MOQOSBridge). The alerts are then read by appropriate
behaviors (AvoidCollision, AvoidCollisionUpDown,
and KeepFormation) which adjust operation of the
vehicle to the situation around.

2.18 pObstacleMgr

This is a counterpart of pContactMgrV20 with regard
to motionless obstacles reported in variable
TRACKED_FEATURE. In addition to alerts which
indicate parameters of observed obstacles, and which
are then used by appropriate vehicle behaviors, the
task of pObstacleMgr is also to compress information
provided by a sequence of TRACKED_FEATURE
publications. pObstacleMgr reads positions of the
obstacles and builds convex polygons for each
obstacle. This way, the behaviors do not deal with
sequences of points but with compressed objects.

3 DESIGN OF HIGH-LEVEL CONTROL SYSTEM
INCLUDING DECK UNIT SOFTWARE
COMPONENTS

The shoreside architecture is depicted in Figure
\ref{fig:moosBrzeg}. It consists of nine MOOS IvP
applications, i.e.. MOOSDB, pJANUS-MOOSBridge,
pJoystick, pMVEventHandler, pVehicleStateViewer,
pMarineViewer, uXMS, uPokeDB, pShare. All the
applications are outlined below.

[pVehicleStateViewer] I pMarineViewer I
¥ E

« ,
: MOOSDB F—'| uPokeDB

P 4

i
MOOSBrifge
g P 2
'\\\ % /-

,'//

Communication Devices
(Hydromodems, WiFi)

Figure 3. Shoreside software architecture

277

3.1 MOOSDB

MOOSDB application is already described in section
2.1 MOOSDB

3.2 pJANUS-MOOSBridge

In order to handle communication with a vehicle
PJANUS-MOOQOSBridge application has to know which
MOQOS variables are to be sent and received. Outgoing
messages relate to MOOS variables subscribed by
pPJANUS-MOOSBridge application. There are three
such variables, ie. REMOTE, MISSION, and
NAVIGATION. All of them are string variables
including a sequence of parameters encoded as strings
and separated by commas.

REMOTE variable includes parameters for remote-
control, e.g. turn right, speed up, go to the point
(10,10), heading 90 deg., speed 1 m/s. MISSION
variable includes actions to perform regarding vehicle
mission, i.e. start or stop mission, or it defines
parameters of mission, e.g. safety parameters (max
depth, max distance to cover, accepted operational
area), type of swarm, distances between individuals,
path (for swarm leader), communication intervals (for
swarm leader). And, NAVIGATION variable includes
parameters for navigation system of each vehicle. The
key parameter is the origin of the coordinate system,
the same for all vehicles — geographical coordinates in
the form of latitude and longitude.

In addition to outgoing MOQOS variables, pJANUS-
MOOQOSBridge has to know incoming variables. They
will be encoded in appropriate data structures and
sent in a compressed form. The name of the variable
will not be encoded as a string but as an integer.
Meanwhile, MOOSDB needs the name of the variable
not an integer. In consequence, pJANUS-MOOSBridge
needs mapping between integers and variable names.

3.3 pShare

This application is a counterpart of pJANUS-
MOQOSBridge, however, with respect to WiFi
communication link. It is a standard MOOS IvP app
which needs to be configured in a “.moos”
configuration file which defines the whole MOQOS
community — each app belonging to the community is
defined in the file by a list of configurable app
parameters with their default values. pShare has two
parameters, ie. configuration of input channel
(number of port used by pShare for input and
multicast number if used) and a list of output MOOS
variables with assigned parameters of output channel
to each of them (IP and the number of port of pShare
working on a vehicle). Detailed specification of
pShare can be found in [2].

In addition to REMOTE, MISSION, and
NAVIGATION variables, pShare will also send
APPCAST_REQ variable. This variable is generated
by each appcast viewer application like
pMarineViewer and it is directed to selected appcast
apps with request to send the so-called appcast
reports which include the state of the app in the form
of appropriately formed string.

278

3.4 ploystick

This application is meant to handle Joystick. In order
for pJoystick to start working, it has to be
intentionally activated by sending REMOTE_CONF
message with activation string as a variable value, e.g.
REMOTE_CONF="activate”. The same applies to
stopping the app. In this case, REMOTE_CONF
should take deactivating value, e.g.
REMOTE_CONF="deactivate”. Once activated,
ploystick reads messages sent by Joystick, converts
them into REMOTE messages, and finally sends them
to MOOSDB using Notify operation. After receiving
new value of REMOTE, MOOSDB sends it to pShare
and pJANUS-MOOSBridge which send it further to
the vehicle.

3.5 pMVEventHandler

This app is intended to handle events generated by
Deck Unit app called pMarineViewer [3] (see further).
pMarineViever is a standard MOOS IvP app which
generates three types of events, i.e.: (i) pressing one of
four buttons - each button has variable-
name/variable-value pair assigned in “.moos”
configuration file, (ii) changing app context by
clocking an option in the menu, (iii) pressing a mouse
button. pMVEventHandler will cooperate with
pMarineViewer by intercepting events generated by
the latter app and by sending appropriate orders to
pMarineViewer to display objects on the map which
relate to the events. For example, if pMarineViewer is
in generating path for the swarm mode (an
appropriate menu option) then each mouse click on
the map will be received by pMVEventHandler which
will instruct pMarineViewer to draw a way-point in
the clicked position and to link it with neighboring
way-points, through drawing a line. After completing
path definition, a button on pMarineViewer can be
pressed which should run pMVEventHandler
window aimed at specifying other mission
parameters, e.g. depth, distance for each vehicle,
safety region.

The whole functionality of pMVEventHandler will
be strongly linked to pMarineViewer functionality
which in turn will depend on tasks which the entire
Deck Unit will have to perform. At the point of
writing this paper, three main functionalities have
been identified, i.e. mission definition (path consisting
of a sequence of way-points), monitoring of swarm
(individual vehicles) behavior on the map, monitoring
of MOQOS IvP appcast applications. Only the first
functionality will require pMVEventHandler reaction.

3.6 pVehicleStateViewer

The task of this app is to view the state of each
vehicle. This state will be defined in a number of
MOQOS variables. In fact, pVehicleStateViewer will do
the same what pMarineViewer can do, without
viewing geoinformation. The idea is however, to
organize the view in a more convenient way than it is
done by pMarineViewer. That is, a user will be able to
choose vehicle and MOQS variable describing its
state. Then, all the parameters stored in the variable
will be displayed in a compact form. What is more,

the task of pVehicleStateViewer will be also to
generate log files for each vehicle. Each log will
include selected parameters from different variables.
pVehicleStateViewer will be configured either in a
“.moos” or a separate XML file.

3.7 pMarineViewer

This app has already been mentioned above. It is a
standard MOOS app which has two main tasks. First,
it is the only app which is able to process
geoinformation, that is, to define way-points
determining the desired path of the swarm, and to
monitor position of each vehicle. Second, it is also
meant for monitoring different MOOS variables and
state of MOOS apps. Example widow of
pMarineViewer is depicted in Figure 4.

An additional functionality of pMarineViewer is to
notify MOOSDB about new values of variables
defined in “.moos” configuration file. It means that if
we know expected values of the variables in advance,
we can assign variable-name/variable-value pairs to
selected action components (different buttons, menu)
of pMarineViewer and activate them at any moment.

Figure 4. Example widow of pMarineViewer app [3]

3.8 uXMS

This is a standard terminal-based MOOS app for
viewing the content of MOOSDB. The content can be
displayed in different manner. The user can choose
variables to show, can show history of variable
updates or can show variables published by a selected
app. Example window of uXMS is depicted in
Figure 5.

Terminal — uXMS — B2x 14

uXMS_995 alpha 0/0(1156)

(T) (C) VarValue (SCOPING::jaisec)

APPCAST uSimMarine "proc=uSimMarine”

APPCAST_REQ n/a n/a

APPCAST_REQ_ALL pMarineViewer "node=all,app=all,duration=3.0,key..."
APPCAST REQ ALPHA pMarineViewer "node=alpha,app=uSimMarine,duratio...”
DESIRED_HEADING pHelmIvP
HELM MAP CLEAR pMarineviewer
NAV_X uSimMarine
PMV_CONNECT pMarineviewer

VarName (S)ource

cooo

Figure 5. Example window of uXMS app [4]

3.9 uPokeDB

This is a terminal-based app for poking MOOSDB,
that is, for updating the content of MOOSDB. To this
end, one indicates MOOS community (“.moos” file),
and a list of variable-name/variable-value pairs.

uPokeDB is a supporting app for
pMVEventHandler and pMarineViewer which is able
to set values of variables which are not handled by the
two latter apps.

4 SUMMARY

The paper presents the software architecture for
underwater vehicles operating in a swarm. The
proposed architecture is consistent with the MOOS-
IvP approach in which we are dealing with many
applications cooperating with each other using one
medium, which is the MOOSDB application.

On the vehicle side, the architecture includes
applications responsible for the following
functionalities: handling navigation and observation
devices and sensors, handling the battery system,
generating logs, communication, high and low-level
control including swarm control, remote control,
handling emergency situations, generation of
messages about the status of the vehicle. In turn, on
the shoreside, the architecture includes applications
responsible for the following functionalities:
communication, monitoring the status of vehicles,
generating output messages and commands.

REFERENCES

[1] Link: https://oceanai.mit.edu/moos-ivp/pmwiki/pmwiki.
php?n=Main.HomePage

[2] Link: www.moos-ivp.org : Manifest - P Share browse
(mit.edu)

[3] Link: https://oceanai.mit.edu/ivpman/pmwiki/pmwiki.
php?n=IvPTools.PMViewer

[4] Link: https://oceanai.mit.edu/ivpman/pmwiki/pmwiki.
php?n=IvPTools.UXMS

279

