PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical analysis of stress distribution generated in spherical polyethylene inserts by knee joint endoprotheses’ sleds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents analysis of stress distribution in the friction node of knee joint endoprosthesis where sleds are made of various titanium alloys and CoCrMo cooperate with spherical polyethylene inserts. Currently used titanium alloys consists of Nb, Ta, Zr or Mo and with lesser value of Young’s modulus than Ti6Al4V alloy, or steel CoCrMo, which significantly varies from other metal materials. The obtained results make it possible to indicate the “weak points” of the accepted solution, and thus counteract the subsequent effects resulting from premature wear of endoprosthesis elements. The analysis was conducted with numerical method of ADINA System 8.6. The Finite Elements Method allowed to compute and present stress distribution quickly in all elements of the model.
Rocznik
Strony
1--5
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
  • Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Al. Armii Krajowej 21, 42-217 Częstochowa, Poland
  • Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Al. Armii Krajowej 21, 42-217 Częstochowa, Poland
Bibliografia
  • 1. Gierzyńska-Dolna, M. (2002). Biotribology. Częstochowa. Publishing of Czestochowa University of Technology.
  • 2. Gierzyńska-Dolna, M. & Kubacki, J. (1999). Specificity of wear of hip and knee endoprostheses. Materials of II Symposium of Engineering Orthopedics and Protetics. IOP’99 Białystok. 45–51.
  • 3. Gierzyńska-Dolna, M. (1997). Tribological problems in natural and artificial human joint. Biomaterials Engineering . 2/1997.
  • 4. Long, M. & Rack, H.J. (1998). Titanium alloys in total joint replacement – a materials science perspective. Biomaterials. 19 (1998) 1621–1639.
  • 5. Zienkiewicz, O.C. (1972). Finite Elements Method. Publishing Arkady.
  • 6. Marciniak, J. (2002). Biomaterials. Gliwice. Publishing of Silesian University of Technology.
  • 7. Dygut, J. & Kuchta, M. (2015). Research on dynamics of the knee joint for different types of loads. Bio-Algorithms and Med-Systems . 11. 4. DOI: 10.1515/bams-2015-0022.
  • 8. Olinski, M., Gronowicz, A., Handke, A. &Ceccarelli, M. (2016). Design and characterization of a novel knee articulation mechanism. Internati. J. Appl. Mech. Engine . 21. 3. DOI: 10.1515/ijame-2016-0037.
  • 9. Dathe, H., Gezzi, R., Fiedler, Ch., Kubein-Meesenburg, D. & Nägerl, H. (2016). The description of the human knee as four-bar linkage. Acta of Bioengin. Biomech . 18. 4. DOI: 10.5277/ABB-00464-2015-03.
  • 10. Nagerl, H., Dathe, H., Fiedler, Ch., Gowers, L., Kirsch, S., Kubein-Meesenburg, D., Dumont, C. & Wachowski, M.M. (2015). The morphology of the articular surfaces of biological knee joints provides essential guidance for the construction of functional knee endoprostheses. Acta of Bioengine. Biomech . 17. 2. DOI: 10.5277/ABB-00119-2014-02.
  • 11. Mielińska, A., Czamara, A., Szuba, Ł. & Będziński, R. (2015) Biomechanical characteristics of the jump down of healthy subjects and patients with knee injuries. Acta of Bioengineering and Biomechanics . 17. 2. DOI: 10.5277/ABB-00208-2014-04.
  • 12. Ciszkiewicz, A. & Knapczyk, J. (2014) Parameters estimation for the spherical model of the human knee joint using vector method. Internat. J. Appl. Mech. Engine . 19. 3. DOI: 10.2478/ijame-2014-0035.
  • 13. Hajduk, G., Nowak, K., Sobota, G., Kusz, D., Kopeć, K., Błaszczak, E., Cieliński, Ł. & Bacik, B. (2016). Kinematic gait parameters changes in patients after total knee arthroplasty: Comparison between cruciate-retaining and posterior-substituting design. Acta of Bioenginee. Biomech. 18. 3. DOI: 10.5277/ABB-00405-2015-03.
  • 14. Melzer, P., Głowacki, M., Głowacki, J. & Misterska, E. (2014). Isokinetic evaluation of knee joint flexor and extensor muscles after tibial eminence fractures. Acta of Bioengine. Biomech . 16. 3. DOI: 10.5277/abb140313.
  • 15. Knapczyk, J. & Góra-Maniowska, M. (2017). Displacement analysis of the human knee joint based on the spatial kinematic model by using vector method. Acta Mech. Autom . 11. 4. DOI: 10.1515/ama-2017-0050.
  • 16. Krzywicka, M., Grudziński, J., Tatarczak, J. & Ścibisz, P. (2016). Study on the surface of the polymer insert of the knee replacement using pulsed thermography. Inż. Mater . 37. 2. DOI: 10.15199/28.2016.2.5.
  • 17. Szmajda, M. & Bączkowicz, D. (2018). Use of incremental decomposition and spectrogram in vibroacoustic signal analysis in knee joint disease examination. Prze. Elektrotech . 94. 7. DOI: 10.15199/48.2018.07.41.
  • 18. Wierzcholski, K. (2017). Geometrical structure for endoprosthesis surface lubrication and wear prognosis. J. KONES . 24. 4. DOI: 10.5604/01.3001.0010.3160.
  • 19. Korga, S., Makarewicz, A. & Lenik, K. (2015) Methods of discretization objects continuum implemented in fem preprocessors. Adv. Sci. Technol. Res. J . 9. 28. DOI: 10.12913/22998624/60800.
  • 20. Musalimov, V., Monahov, Y., Tamre, M., Robak, D., Sivitski, A., Aryassov, G. & Penkov, I. (2018). Modelling of the human knee joint supported by active orthosis. Intern. J. Appl. Mech. Engine . 23. 1. DOI: 10.1515/ijame-2018-0007.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-971ea31e-3cfc-4e1b-b760-684108b4cf98
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.