PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Comparison of One-Variable and Two-Variable Polynomial Regression Models to Measure the Cellular Concrete Moisture Using the Time Domain Reflectometry Method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper there are presented models for moisture assessment applying the two reflectometric sensors in the cellular concrete samples. The readouts express the dependence between the cellular concrete moisture, measured in gravimetric way and the apparent permittivity values achieved by the Time Domain Reflectometry method and two surface sensors. According to observed relationships, the two types of calibration models were derived – the first model is a traditional one-variable model covering only time of signal propagation and the second one two-variable model which together with signal propagation time takes into account signal attenuation. The aim of this paper is to verify the efficiency of multiple regression to improve the accuracy of moisture estimation using the TDR technique. The applied models that consider amplitude attenuation are used for this type of analysis for the first time. With the conducted research and analyses, it was shown that the measurement quality of the method could be improved by obtaining more favorable values of the determination coefficient, Residual Standard Error, Root Mean Squared Error. Also the correlation analysis shows a better fit of two-variable models than one-variable to the obtained data.
Twórcy
  • Department of Applied Mathematics, Faculty of Mathematics and Information Technology, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
autor
  • Department of Applied Mathematics, Faculty of Mathematics and Information Technology, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
  • Department of Physics, Faculty of Natural Sciences and Informatics, Constantine the Philosopher University in Nitra, Tr. A. Hlinku 1, 94901 Nitra, Slovakia
  • Department of Water Supply and Wastewater Disposal, Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
  • Department of Water Supply and Wastewater Disposal, Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B, 20-618 Lublin, Poland
Bibliografia
  • 1. He H, Aogu K, Li M, Xu J, Sheng W, Jones SB, González-Teruel JD, Robinson DA, Horton R, Bristow K, Dyck M, Filipović V, Noborio K, Wu Q, Jin H, Feng H, Si B, Lv J. A review of time domain reflectometry (TDR) applications in porous media. Adv Agron. 2021; 168: 83–155.
  • 2. Majcher J, Kafarski M, Szypłowska A, Wilczek A, Lewandowski A, Skierucha W, Staszek K. Prototype of a sensor for measuring moisture of a single rapeseed (Brassica napus L.) using microwave reflectometry. Meas. 2023; 214: 1–9.
  • 3. Suchorab Z, Tabiś K, Brzyski P, Szczepaniak Z, Rogala T, Susek W, Łagód G. Comparison of the moist material relative permittivity readouts using the non-invasive reflectometric sensors and microwave antenna. Sensors. 2022; 22(10): 3622–3638.
  • 4. Černý R. Time-domain reflectometry method and its application for measuring moisture content in porous materials: A review. Meas J Int Meas Confed. 2009; 42(3): 329–36.
  • 5. Basack S, Goswami G, Khabbaz H, Karakouzian M. Flow characteristics through granular soil influenced by saline water intrusion: A laboratory investigation. Civ Eng J. 2022; 8(5): 863–78.
  • 6. Topp GC, Ferre T. Time-domain reflectometry. In: Encyclopedia of Soils in the Environment [Internet]. Elsevier; 2023; 436–43. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128229743002846.
  • 7. Malicki MA, Plagge R, Roth CH. Improving the calibration of dielectric TDR soil moisture determination taking into account the solid soil. Eur J Soil Sci. 1996; 47(3): 357–66.
  • 8. Arkes J. Regression Analysis: A Practical Introduction. Br Libr Cat. 2019.
  • 9. Suchorab Z, Widomski MK, Łagód G, BarnatHunek D, Majerek D. A noninvasive TDR sensor to measure the moisture content of rigid porous materials. Sensors (Switzerland). 2018; 18(11).
  • 10. Paśnikowska-Łukaszuk M, Wlazło-Ćwiklińska M, Zubrzycki J, Suchorab Z. Comparison of measurement possibilities by non-invasive reflectometric sensors and invasive probes. Appl Sci. 2023; 13(1).
  • 11. Futa A, Jastrzębska M, Paśnikowska-Łukaszuk M, Wośko E, Suchorab Z. Improving the calibration of surface time domain reflectometry sensors for moisture evaluation of building materials using the analysis of covariance method. ASTRJ. 2023; 17(5): 326–336.
  • 12. Suchorab Z, Malec A, Sobczuk H, Łagód G, Gorgol I, Łazuka E, Brzyski P, Trník A. Determination of Time Domain Reflectometry Surface Sensors Sensitivity Depending on Geometry and Material Moisture. Sensors. 2022; 22(3): 735.
  • 13. Verzani J. Linear regression. Munro’s Stat. Methods Heal Care Res. Sixth Ed. 2011: 339–370.
  • 14. Izenman AJ. Modern Multivariate Statistical Techniques. Artif Neural Networks. 2008: 101–118.
  • 15. Aki R, Roberts JM. Multiple Regression: A Practical Introduction. United States SAGE Publ. 2020;
  • 16. Royston P, Sauerbrei W. Multivariable Model - Building: A Pragmatic Approach to Regression Anaylsis based on Fractional Polynomials for Modelling Continuous Variables. Wiley Series in Probability and Statistics. 2008; 322.
  • 17. Keith TZ, Multiple regression and beyond: An introduction to multiple regression and structural equation modeling. Routledge. 2019: 1–639.
  • 18. Dhakal CP. Interpreting the Basic Outputs (SPSS) of Multiple Linear Regression. Int. J Sci Res. 2018; 8: 1448–1452.
  • 19. Wuttisombatjaroen J, Hemnithi N, Chaturabong P. Investigating the influence of rigden void of fillers on the moisture damage of asphalt mixtures. Civ Eng J. 2023; 9(12): 3161–3173.
  • 20. Al-Khazaleh M, Al-Masri DO, Al-Khodari MHS, Hamdan DAY, Hamdan AAY, Bani Atta MNM. Utilization potential of glass fiber and crumbled rubber as subgrade reinforcement for expansive soil. J Hum Earth Future. 2023; 4(3): 332–344.
  • 21. Tu P, Vimonsatit S, Hansapinyo C. The Influence of Moisture on the Frequency Spectrum of Time Varying Mass Engineering Structure. Civ Eng J. 2023; 9(1): 17–28.
  • 22. Majcher J, Kafarski M, Wilczek A, Szypłowska A, Lewandowski A, Woszczyk A, Skierucha W. Application of a dagger probe for soil dielectric permittivity measurement by TDR. Meas J Int Meas Confed. 2021; 178.
  • 23. Ju Z, Liu X, Ren T, Hu C. Measuring soil water content with time domain reflectometry: An improved calibration considering soil bulk density. Soil Science. 2010; 175(10): 469–473.
  • 24. Roth K, Schulin R, Flühler H, Attinger W. Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour. Res. 1990; 26: 2267–2273.
  • 25. Udawatta RP, Anderson SH, Motavalli PP, Garrett HE. Calibration of a water content reflectometer and soil water dynamics for an agroforestry practice. Agrofor. Syst. 2011; 82(1): 61–75.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-971dc574-485b-4701-a707-fd826304f644
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.