PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Food Waste – Challenges and Approaches for New Devices

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Food waste has recently received attention due to its environmental, economic and social impacts. Final processing of food waste encounters a number of technical challenges, arising from weak physical structure of food waste with weak porosity, high content of water, and low carbon-to-nitrogen relation. This study deals with the research of food waste processing in households by using an automatic device. The main objective of the study was to assess the toxicity of the end-product produced by an automatic device. The research included 10 experiments. The input foundation consisted of common food waste generated in household kitchens. Following its processing, the end-product was tested in a pot experiment for the germination capacity and biomass increase in different concentrations. The end-product was mixed with the reference soil in concentrations 5/95, 30/70, 50/50 (tested/reference substrate). The testing included three different plant species, i.e. Sinapis alba L., Hordeum vulgare L. and Cannabis sativa L. The germination capacity of plants and their increase in biomass were evaluated after 21 days. The increase in biomass was monitored by using the Before-After-Control-Impact method. The plants developed much better without the end-product additive to the soil substrate than with its small addition. The best germination capacity in the case of end-product addition was observed in the concentration ratio 30/70 in all plants. In spite of this, the highest increase in biomass was recorded in the concentration ratio 5/95. This might have caused the occurrence of mould in the pots. The test shows that the end-product made of food waste is toxic to plants; therefore, it is not recommended for direct application as a soil amendment.
Rocznik
Strony
231--238
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
  • Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland
  • Department of Applied and Landscape Ecology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech Republic
  • Department of Revitalization and Architecture, Institute of Civil Engineering, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland
Bibliografia
  • 1. Beretta C., Hellweg S. 2019: Potential environmental benefits from food waste prevention in the food service sector. Resources, Conservation & Recycling, 147, 169-178
  • 2. Cerda A., Artola A., Font X., Barrena R., Gea T., Sánchez A. 2017: Composting of food wastes: Status and challenges. Bioresource Technology, 248, 57-67
  • 3. DEFRA Food and drink waste hierarchy: deal with surplus and waste, 2018. Available: Department for Environment, Food & Rural Affairs (DEFRA), www.gov.uk/government/publications/food-and-drink-wastehierarchy-deal-with-surplus-and-waste/food-anddrink-waste-hierarchy-deal-with-surplus-and-waste
  • 4. Elke K.A. and Zannini E. 2013: Cereal Grains for the Food and Beverage Industries, 155-201
  • 5. Elkhalifa, S., Mackey H.R., Al-Ansari T., Mckay G. 2019: Food waste to biochars through pyrolysis: A review. Resources, Conservation and Recycling, 144: 310-320
  • 6. FAO. 2013: Food wastage footprint.
  • 7. Guo W., Zhou Y., Zhu N., Hu H. 2018: On site composting of food waste: A pilot scale case study in China. Resources, Conservation and Recycling, 132, 130-138
  • 8. Hall K.D., Guo J., Dore M., Chow C.C. 2009: The progressive increase of food waste in america and its environmental impact.
  • 9. Kannah R.Y., Merrylin J., Devi T.P., Kavitha S., Sivashanmungam P., Kumar G., Banu J.R. 2020: Food waste valorization: Biofuels and value added product recovery. Bioresource Technology Reports, 11, 100524
  • 10. Kauser, H., Pal S., Haq I., Khwairakpam M. 2020: Evaluation of rotary drum composting for the management of invasive weed Mikania micrantha Kunth and its toxicity assessment. Bioresource Technology, 313, 123678
  • 11. Kucbel M., Raclavská H., Švédová B., Růžičková J., Raclavsky K., Drozdová J., Sassmanová V., Juchelková D. 2019: Properties of composts from household food waste produced in automatic composters. Journal of Environmental Management, 236, 657-666
  • 12. Kumar S., Negi S., Mandpe A., Singh R.V., Hussain A. 2018: Rapid composting techniques in Indian context and utilization of black soldier fly for enhanced decomposition of biodegradable wastes – A comprehensive review. Journal of Environmental Management, 227, 189-199
  • 13. Lambin, E.F., Meyfroidt, P., 2011. Global land use change, economic globalization. Proceedings of the National Academy of Sciences, 108(9): 3465-72
  • 14. Masih-Das, J. 2018: Anaerobic co-digestion of foodwaste with liquid dairy manure or manure digestate: Co-substrate limitation and inhibition. Journal of Environmental Management, 223: 917-924
  • 15. Maxianova, A., Vaverková M.D., Adamcová D. 2019: Impact of using additives in composting food waste. MendelNet
  • 16. Morone P., Koutinas A., Gathergood N., Arshadi M., Matharu A. 2019: Food Waste: Challenges and Opportunities for Enhancing the Emerging BioEconomy. Journal of Cleaner Production, 221
  • 17. Oldfield, T.L., White E., Holden N.M. 2016: An environmental analysis of options for utilising wasted food and food residue. Journal of Environmental Management, 183 (Part 3), 826-835
  • 18. Pandey, P., Lejeune M., Biswas S., Morash D., Weimer B.C., Young G. 2016: A new method for converting foodwaste into pathogen free soil amendment for enhancing agricultural sustainability. Journal of Cleaner Production, 112(1), 205-213
  • 19. Reynolds C., Goucher L., Quested T., Bromley S., Gillick S., Wells V.K., Evans D., Koh L., Carlsson-Kanyama A., Katzeff C., Svenfelt A., Jackson P. 2019: Consumption-stage food waste reduction interventions – What works and how to design better interventions. Food Policy, 83, 7–27
  • 20. Salemdeeb R., Daina M.B., Reynolds C., Al-Tabbaa A. 2018: An environmental evaluation of food waste downstream management options: a hybrid LCA approach. International Journal of Recycling of Organic Waste in Agriculture, 7, 217-229
  • 21. Sam, L., Lo I. 2016: Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts. Environmental Science and Pollution Research, 23, 24435–24450
  • 22. Sharma A., Saha T.N., Arora A., Shah R., Nain L. 2017: Efficient Microorganisms Compost Benefits Plant Growth and Improves Soil Health in Calendula and Marigold. Horticultural Plant Journal, 3(2): 67–72
  • 23. Shin S.G., Han G., Lim J., Lee C., Hwang S. 2010: A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater. Water Research, 44(17), 4838-4849
  • 24. Slorach, P.C., Jeswani H.K., Cuéllar-Franca R., Azapagic A. 2019: A. Environmental and economic implications of recovering resources from food waste in a circular economy. Science of The Total Environment, 693, 133516
  • 25. Smith E.P., Orvos D.R., Cairns J. 1993: Impact assessment using the before-after-control-impact (BACI) model: Concerns and comments. Canadian Journal of Fisheries and Aquatic Sciences, 50(3), 456-684
  • 26. Vaverková M.D., Elbl J., Voběrková S., Koda E., Adamcová D., Gusiatin Z.M., Rahman A.A., Radziemska M., Mazur Z. 2020: Composting versus mechanical-biological treatment: Does it really make a difference in the final product parameters and maturity. Waste Management, 106, 173-183
  • 27. Voběrkova S., Vaverková, M.D., Burešová A., Adamcová D., Vršanská M., Kynický J., Brtnický M., Adam V. 2020: Food waste composting. Is it really so simple as stated in scientific literature? A case study. Science of the Total Environment, 723, 138202
  • 28. Wang X., Selvam A., Wong J.W. 2016: Influence of lime on struvite formation and nitrogen conservation during food waste composting. Bioresource Technology, 217, 227-232
  • 29. Yao J., Chopra S.S., Zhang L., Kyoungjin A. 2019: Life cycle assessment (LCA) of food waste treatment in Hong Kong: Onsite fermentation methodology. Journal of Environmental Management, 240, 343-351
  • 30. Zhou Y., Selvam A., Wong JWC. 2018: Chinese medicinal herbal residues as a bulking agent for food waste composting. Bioresource Technology, 249, 182-188
  • 31. Zhou X., Yang J., Xu S., Wang J., Zhou Q., Li Y., Tong X. 2020: Rapid in-situ composting of household food waste. Process Safety and Environmental Protection, 141, 259-266
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-971a0412-92ea-417e-b149-fd9b9c08fbe0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.