PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exciter fractional model and its susceptibility on parameter changes

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper concerns the application of fractional calculus in the modeling of a selected part of a power system generating unit, which is the high frequency AC exciter. The model’s fractional derivative-based generalization is recalled. The basis of the estimation process for the model consists of two sets of measurement waveforms. In order to solve the fractional and nonlinear problem – a numerical solver is applied. The solver and the estimation procedure have been both implemented in GNU Octave. The model parameter susceptibility is examined. The changes of each model parameter value is studied in a way that the influence on the model output is observed.
Rocznik
Tom
Strony
87--98
Opis fizyczny
Bibliogr. 27 poz., rys.
Twórcy
  • Silesian University of Technology
autor
  • Silesian University of Technology
Bibliografia
  • [1] Lewandowski M., Majka Ł., Świetlicka A., Effective estimation of angular speed of synchronous generator based on stator voltage measurement.
  • [2] Paszek S., Boboń A., Berhausen S., Majka Ł., Nocoń A., Pruski P., Synchronous Generators and Excitation Systems Operating in a Power System. Measurement Methods and Modeling. Lecture Notes in Electrical Engineering vol. 631. Cham: Springer, 2020.
  • [3] Majka Ł., Paszek S., Mathematical model parameter estimation of a generating unit operating in the Polish National Power System. Bull. Pol. Acad. Sci., Tech. Sci. 2016 vol. 64 no. 2, pp. 409–416.
  • [4] IEEE Guide for Identification, Testing, and Evaluation of the Dynamic Performance of Excitation Control Systems In: IEEE Std 421.2-2014, 2014, pp. 1–63.
  • [5] IEEE Recommended Practice for Excitation System Models for Power System Stability Studies. In: IEEE Std. 421-5-2016, 2016, pp. 1–207.
  • [6] Majka Ł., Using fractional calculus in an attempt at modeling a high frequency AC exciter. Advances in non-integer order calculus and its applications. Lecture Notes in Electrical Engineering vol. 559. Cham: Springer, 2020, pp. 55–71.
  • [7] Majka Ł., Klimas M., Diagnostic approach in assessment of a ferroresonant circuit. Electr. Eng. 2019 vol. 101 iss. 1, pp. 149–164.
  • [8] Kapoulea S., Tsirimokou G., Psychalinos C., Elwakil A.S., Generalized Fully Adjustable Structure for Emulating Fractional-Order Capacitors and Inductors of Orders less than Two. Circuits, Systems, and Signal Processing, 2019, pp. 1–18.
  • [9] Majka Ł., Fractional derivative approach in modeling of a nonlinear coil for ferroresonance analyses. Non-integer order calculus and its applications. Lecture Notes in Electrical Engineering vol. 496. Cham : Springer International Publishing, 2019, pp. 135–147.
  • [10] Dzieliński A., Sarwas G., Sierociuk D., Comparison and validation of integer and fractional order ultracapacitor models. Advances in Difference Equations, 2011:11, 15 pages.
  • [11] Sowa M., DAQ-based measurements for ferromagnetic coil modeling using fractional derivatives. 2018 International Interdisciplinary PhD Workshop (IIPhDW). Piscataway : Institute of Electrical and Electronics Engineers, 2018, pp. 91–95.
  • [12] Caputo M., Linear model of dissipation whose Q is almost frequency independent. II. Geophysical Journal International 1967 vol. 13, no. 5, pp. 529–539.
  • [13] Podlubny I., Fractional Differential Equations. Academic Press, New York, 1999.
  • [14] Kawala-Janik A., Zolubak M., Bauer W., Nazimek B., Sobolewski T., Martinek R., Sowa M., Pelc M., Implementation of Non-Integer Order Filtration for the Purpose od Disparities Detection in Beta Frequencies – A Pilot Study. 2018 23rd International Conference on Methods & Models in Automation & Robotics (MMAR), 2018, pp. 607–612.
  • [15] Majka Ł., Applying a fractional coil model for power system ferroresonance analysis. Bull. Pol. Acad. Sci., Tech. Sci. 2018 vol. 66 no. 4, pp. 467-474. Int. J. Electric. l Power. Energ. Syst. 2018 vol. 100, pp. 391–399.
  • [16] Oprzędkiewicz K., Dziedzic K., Więckowski Ł., Non integer order, discrete, state space model of heat transfer process using Grünwald-Letnikov operator. Bull. Pol. Acad. Sci., Tech. Sci., 2019, vol. 67, no. 5, 905–914.
  • [17] General Electric, Energy Management System – PSLF – GE Energy Consulting (2018).
  • [18] Morgado M.L., Ford N.J., Lima P.M., Analysis and numerical methods for fractional differential equations with delay. Journal of Computational and Applied Mathematics, vol. 252, 2013, pp. 159–168.
  • [19] Li Y., Sun N., Numerical solution of fractional differential equations using the generalized block pulse operational matrix. Computers & Mathematics with Applications vol. 62, 2011, pp. 1046–1054.
  • [20] Sowa M., Numerical solver for fractional nonlinear circuit problems. IEEE CONCAPAN XXXIX. Convencion de Centro America y Panama, Guatemala, 2019. Piscataway: Institute of Electrical and Electronics Engineers, 2019 (in print).
  • [21] http://msowascience.com (accessed 31.01.2020)
  • [22] Sowa M., Dziedzic K., Expansion of a solver for nonlinear fractional problems – the inclusion of time delays. 2019 24th International Conference on Methods and Models in Automation and Robotics (MMAR), 26-29 August 2019, Miedzyzdroje, Poland. Piscataway: Institute of Electrical and Electronics Engineers, 2019, pp. 249–254.
  • [23] Sowa M., Solutions of circuits with fractional, nonlinear elements by means of a SubIval solver. Non-integer order calculus and its applications. In: Lecture Notes in Electrical Engineering, vol. 496. Cham : Springer. 2019, pp. 217–228.
  • [24] Garrappa R., Trapezoidal methods for fractional differential equations: Theoretical and computational aspects. Mathematics and Computers in Simulation, vol. 110, 2015, pp. 96–112.
  • [25] Garrappa R., Numerical Solutions of Fractional Differential Equations: A Survey and a Software Tutorial. Mathematics, vol. 6, no. 2, 2018, 16 pages.
  • [26] https://www.dm.uniba.it/Members/garrappa/Software
  • [27] Nocedal J., Wright S.J., Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, Heidelberg, 2006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97192745-f1fa-4e5e-9cdc-a4da03286237
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.