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The paper concerns the application of fractional calculus in the modeling of a selected 
part of a power system generating unit, which is the high frequency AC exciter. The 
model’s fractional derivative-based generalization is recalled. The basis of the estimation 
process for the model consists of two sets of measurement waveforms. In order to solve 
the fractional and nonlinear problem – a numerical solver is applied. The solver and the 
estimation procedure have been both implemented in GNU Octave. The model parameter 
susceptibility is examined. The changes of each model parameter value is studied in a way 
that the influence on the model output is observed. 
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1. INTRODUCTION 
 
 Simulation is the most effective, economical way of improving reflection of 
real phenomena in almost every aspect of engineering. In particular it can be trans-
ferred to the power system stability and safety problems. XXI century technolo-
gies and IT solutions supported by increasing CPU power encourage the applica-
tion of such non-invasive methods. When modeling transient states in a power 
system a particular significance can be attributed to the reflection of the generating 
unit, because of its role as an active element [1, 2]. Because of the level of its 
complexity the generating unit is not modeled as a whole, but rather divided into 
submodels (Fig. 1). This is mainly beneficial because of the following reasons [3]: 
– the number of instantaneously estimated model parameters is reduced, 
– the number of signals taken into account during the evaluated mathematical 

expressions is also reduced, 
– it increases the reliability of the extracted model because interferences on its 

output caused by other modeled components are avoided. 
Additionally, the above is possible because of the availability of internal signals. 
 



88  Łukasz Majka, Marcin Sowa 
 

 
Fig. 1. Generating unit schematic diagram 

 
The submodel of the exciter with an additional regulator provides an appropriate 
representation of all the features of far more complicated models like that of  
a synchronous generator, e.g. the influence of gains, time constants, limiters and 
saturations. In such an analysis the choice of the signals testing the reliability of 
the model (transients formed in accordance with guidelines given in IEEE stand-
ards [4, 5], which the model is required to support) is not coincidental because of 
their occurrence in tests performed on the real object. 
 In result of the above one obtains a tool for a reliable determination of the 
actual set of parameters reflecting the current condition of the component. It is 
worth to mention that the parameters of the model are constantly changing because 
of the long-term operation, repairs and modernization of the considered object. 
 

2. EXTENDED EXCITER MODEL APPLYING FRACTIONAL 
CALCULUS 

 
 The studied component can be found within an electromachine excitation sys-
tem, which is evident in most commonly appearing classes of generating units 
(associated with the TWW-200 turbogenerator) operating in the Polish Power 
System. The general idea of the model is constituted by IEEE standards but this 
particular structure is an original achievement. The process of its invention, testing 
and modification has been the subject of past papers [2, 3, 6]. 
 The availability of certain well described mathematical foundations and meth-
ods, along with computational tools for their evaluation, allow for an improvement 
of models describing real physical phenomena. One field resulting from such 
mathematical elements is fractional calculus, which has numerously proven to be 
useful in modeling when electrical engineering is concerned [7, 8, 9, 10, 11]. 
 When applying fractional derivatives, the previously known model [3] can be 
extended [6], which results in its more general form as depicted in Fig.2. 
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Fig. 2. Fractional order model structural diagram of the exciter with an additional regulator 

 
The introduction of the operators like sα leads to the fractional derivative, where 
in this study the Caputo definition (with α ∈ [0, 1]) is considered [12]: 
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The Caputo definition (next to the Riemann-Liouville definition [13]) is one of the two 
most commonly applied definitions in analyses of electrical engineering and other en-
gineering fields in general [9, 14, 15, 16]. 

The differential equations describing the model take the form: 
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with an additional linear equation being: 
 fe 1 R ,I e U+ =  (6) 
and the saturation functions (limiting e2 to [e2 min, e2 max] and e3 to [e3 min, e3 max]: 
 b 2 2sat ( ),e e=  (7) 
 fe 3 3sat ( ).I e=  (8) 
For the purpose of the analyses in this paper the saturation functions (sat2 and sat3) 
only limit their input variables from the bottom to 0, i.e.: 
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3. MEASUREMENT BASIS 
 

 The measurement basis is comprised of signals recorded in a power plant gen-
erating unit [3]. These constitute actual dynamic waveforms of the basic electric 
quantities registered during selected test disturbances. One of the commonly ap-
plied test disturbances involves a step change of the reference voltage in the auto-
matic voltage regulator (under the synchronous generator no-load condition) by  
a selected amount. Two tests have been considered, resulting in step changes in 
alternate directions (an increase and a decrease) for the mentioned quantity. As  
a result of the introduced test disturbance on the input of the power generator, as 
far as the exciter is concerned – two measured signals appear: the input signal UR 
and the output signal Ife. Initially, the signals contained industrial noise, which has 
been subjected to filtration [3, 6]. They have also been converted to a per unit 
system because this is how they are introduced in commercial software dedicated 
to power system critical analyses [17]. The obtained waveforms (for both test dis-
turbances) have been depicted in Fig. 3. 
 

 
Fig. 3. Input (UR) and output (Ife) measurement waveforms (in a), 

b) separately – for different test disturbances) 
 
4. MODEL EVALUATION THROUGH FRACTIONAL PROBLEM 

SOLUTION 
 

 The analysis concerns a transient state and, hence, a single model evaluation 
requires the solution of the transient nonlinear problem with an input represented 
by a waveform reconstructed from measurements of UR(t). The following must be 
considered in order to determine the proper manner of handling the problem: 
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– the source time function indicates the need for a tool that can handle arbitrary 

source waveforms, 
– nonlinearities appear in the form of saturation functions: for a general tool be-

ing applied currently, and for possible future extensions of these functions to 
other cases (e.g. arctangent functions), one can consider a tool that can handle 
nonlinear dependencies between variables, 

– fractional derivatives appear; hence, well known ordinary differential equation 
solvers cannot be applied directly. 

There are methods that appear in literature that could handle fractional problems 
with nonlinearities [18, 19]. However, in most cases specially designed tools 
would have to be created basing on them as these are not publicly available. The 
ones that are available are, first off, the adaptive step size solver [20, 21, 22, 23] 
and its constant step size alternative; secondly – there are also solvers of another 
author [24, 25, 26]. Because of the authors’ familiarity with the first solver – it 
has been selected for further analysis. It is available in versions for MATLAB and 
its freeware alternative – GNU Octave. The latter is used in this study. 

The solver deals with problems that appear in the general form: 
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where: 
– w(t) is the full solution vector: 
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combining the state vector x(t) (of length nx) and the vector of the remaining 
variables y(t) (of length ny), 

– the matrix sizes are as follows: MI has size ny × ny, MII has size ny × nx, MIII has 
size nx × ny, MIV has size nx × nx and T has size ny × nv, 

– 0k is a notation meaning a column vector of k zeros, 
– Dαx(t) is a vector of fractional derivatives of the variables in x(t) (of orders 

given in α), 
 
– FNL(w(t)) is a vector (of length nNL) containing nonlinear dependencies on sin-

gle variables of w(t); additionally an auxiliary vector iarg is introduced, which 
stores the indices of the variables that the subsequent nonlinear functions de-
pend on. 

The constant step size alternative of the solver has been applied so that each eval-
uation concerns the same selected time instances. This is also done to avoid com-
plications, where the selection of a less optimal (in the sense of actual measure-
ment waveform reflection accuracy) set of parameters the solver might pick time 
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instances, where the comparison between the solution and the measurements 
yields smaller errors and, hence, treating this new set of parameters as more ap-
propriate. The time step size is selected as Δt = 0.02 s. In further parts of the paper 
the dependencies on time are only written when there is a need to emphasize them 
(i.e. as an example: in most cases UR(t) is written as UR). 
 For the studied problem ny = 3, nx = 3, nv = 1 and nNL = 2. The solution consists 
of the two vectors: 

 [ ]T
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with the fractional derivative orders: 
 [ ]T ,α β γ=α  (14) 

the source vector consists of one variable: 
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The vector of nonlinear dependencies: 
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 [ ]T
NL 2 2 3 3( ) sat ( ) sat ( ) ,e e=F w  (21) 

which leads to the auxiliary vector: 
 [ ]T

arg 5 6 ,=i  (22) 
because of the dependency on the fifth and sixth variable in w respectively. 
 

5. SUSCEPTIBILITY ON PARAMETER CHANGES 
 
 This section concerns a study of the model response on a change in parameter 
values. This gives some insight on what starting values to choose for the parame-
ters before the actual estimation procedure is executed. The parameter values be-
ing studied are given in the vector p with the order being K2, T6, T7, T8, α, β and γ. 
Additionally, when one parameter has already been studied (each time 3 values 
are chosen) then for further parameters the best fit (output of the model versus the 
measurement waveform) for that parameter remains. The results are depicted in 
the plots of Fig. 4 up to Fig. 10. 
 

 
Fig. 4. Study of the susceptibility on changes of K2 with p = [K2 1 1 1 0.8 0.8 0.8]  

 

 
Fig. 5. Study of the susceptibility on changes of T6 with p = [10 T6 1 1 0.8 0.8 0.8] 
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Fig. 6. Study of the susceptibility on changes of T7 with p = [10 0.2 T7 1 0.8 0.8 0.8] 

 

 
Fig. 7. Study of the susceptibility on changes of T8 with p = [10 0.2 0.2 T8 0.8 0.8 0.8] 

 

 
Fig. 8. Study of the susceptibility on changes of α with p = [10 0.2 0.2 0.2 α 0.8 0.8] 

 
Fig. 9. Study of the susceptibility on changes of β with p = [10 0.2 0.2 0.2 0.8 β 0.8] 
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Fig. 10. Study of the susceptibility on changes of γ with p = [10 0.2 0.2 0.2 0.8 0.8 γ] 

 
The starting vector has, hence, the values K2 = 10, T6 = 0.2 sα, T7 = 0.2 sγ, 
T8 = 0.2 sβ, α = 0.8, β = 0.8 and γ = 0.8. 
 

6. PARAMETER ESTIMATION AND RESULTS 
 
 The parameter estimation procedure has been performed in GNU Octave, 
where the objective function involved two solutions of the problem described in 
Section 2 (for different input waveforms of UR, i.e. for the two different test dis-
turbances described in Section 3), where it has been formulated in terms of the 
form given by (10) and the numerical solver mentioned in Section 4. The output 
of the model (i.e. the solution for the variable Ife) is then compared with measure-
ment results. The objective function is a sum of the values computed through the 
following formula (being computed for the mentioned two solutions): 

 2
fe femeas

1
( ) ,

n

i i
i

F I I
=

= −  (23) 

where Ife i and Ife meas i are the simulation result and the measurement for the selected 
time instance (with a unique index i). The function being used for the optimization 
task was sqp, which allows for bounded optimization, applying sequential quad-
ratic programming [27]. The Octave script has been, however, more advanced as 
it involved numerous executions of this function (in a loop) with trials starting 
from different starting p values: after a successful execution of sqp, the next exe-
cution is performed with a determined slight random change in the parameters. 
The lower bounds are given by: 

 L [0.1 0.01 0.01 0.01 0.2 0.2 0.2],p =   
while the upper bounds are: 

 L [20 1 1 1 1 1 1].p =   
The results of the estimation procedure yielded the following parameters (rounded 
to 4 significant digits): 

 2 8.237,K = 2
6 9.8 10 s ,T α−= ⋅ 2

7 6.211 10 s ,T γ−= ⋅ 1
8 5.942 10 s ,T β−= ⋅  

 0.8642,α = 0.9479,β = 0.9885.γ =   
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The comparison between the model response for this set of parameters and the 
measurements of Ife are depicted in Fig. 11 for both studied test disturbances. 
 

 
Fig. 11. Comparisons (for both test disturbances) between the measurement waveform and the out-

put waveform of the model 
 
When considering the objective function formula (23) one can define an error (which 
can be computed for both test disturbances separately): 

 100%.F
n

ε = ⋅  (24) 

The result for the first case is 4.443 %, while for the second the value is 3.967 %. 
A better reflection of the measurements can also be visually noticed in the case of 
the second test disturbance. 
 

7. CONCLUSIONS 
 
 The study concerned the modeling of high frequency AC exciter with an addi-
tional regulator. Its general, fractional derivative-based model has been presented 
in a structural diagram along with the equations that can be derived from it. The 
measurement basis has been recalled, which comprised of signals recorded in  
a power plant generating unit [3]. Two transient conditions of the generating unit 
have been taken into account as the basis for computations. These two conditions 
concerned various test disturbances (step changes) of the reference voltage in the 
automatic voltage regulator, also resulting in specific waveforms for the input sig-
nals for the studied object alone (this has been described in Section 3). Each model 
evaluation, in a later executed estimation procedure, involved the solution of  
a fractional, nonlinear problem. This has been done through a solver applying the 
SubIval numerical method [20, 21, 22, 23]. The estimation procedure, executed in 
GNU Octave, applied the sqp function (which allowed for constrained optimiza-
tion). The result of the analysis shows a good resemblance of the real object re-
sponse; however, this could be improved. In the previous paper concerning this 
analysis the model [6] has very accurately reflected one of the transient states (for 
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one test disturbance). In this paper two test disturbances have been applied. This 
task has proven to be more difficult to match, which is why improvements need 
to be made in future analyses. One such improvement could be the introduction 
of nonlinear functions (e.g. arctangent) instead of saturation functions. This im-
provement will be applied with only some slight modifications as the tool for the 
numerical computations (described in Section 4) can already handle the solutions 
of such resulting fractional nonlinear problems. 
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