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Abstract 
In traditional approach to position fixing navigator exploits mathematical apparatus based on probability the-
ory. Series of assumptions are required in order to use the platform to draw final conclusions. Limited ability 

is available regarding fix accuracy a posteriori evaluation. In the paper Mathematical Theory of Evidence is 
exploited in order to introduce new foundations enabling modeling and solving problems with uncertainty. 
Modified scheme of approach towards making the fix delivers new standpoint for perceiving accuracy of the 
result. 

 

 
 

Introduction 

Imprecise and uncertain data dominate in mari-

time navigation. Imprecision results from wrong 
calibrated devices their natural limitation, as well as 

limitation in perceiving ability of an observer. Un-

certainty is related to imprecision but also refers to 
quality of particular measurement. Observed object 

can be close and clear or far and vague, these two 

cases contributions to the fix should be differentiat-

ed. Positions indicated by various navigational aids 
are also of different quality. They are randomly 

distributed around the true place of the ship. Types 

of distributions of measurements and indications 
are assumed known although their parameters vary 

on real scale depending on many factors.  

Hierarchy among available data is to be upgrad-
ed and included into computation scheme. Unfortu-

nately in traditional approach possibility of doing 

so is rather limited. 

Mathematical Theory of Evidence was proposed 
by Dempster [1] and Shafer [2], it extends probabil-

istic approach. Further extensions enabling pro-

cessing imprecise data [3] create unique platform 
for modeling uncertain knowledge and ignorance. 

Evidence combination scheme as mechanism  

enabling enrichment combined data informative 
context is exploited in many applications [4, 5].  

In nautical applications it can be useful in order  

to make position fixing and evaluate its accuracy 

[6, 7]. Scheme of combination is numerically com-
plex; it is exponentially bounded on the number of 

observations [8]. Therefore, some effort must be 

done in order to reduce number of required itera-
tions. Some improvement in the matter has already 

been achieved [9]. 

Mathematical Theory of Evidence enables  

upgrading models and solving crucial problems  
in many disciplines. The matter is rather hampered 

in traditional, probabilistic approach due to high 

level of uncertainty. MTE delivers new unique op-
portunity once possibilistic extension was adopted 

[10, 11, 12]. Approaches towards theoretical evalu-

ation of tasks including nondeterministic ones and 
those with imprecise data are to be reconsidered. 

Despite obvious advantages significant interest in 

the new opportunity has not been observed so far. 

Publications devoted to nautical applications are 
rather scarce, those appeared are delivered by the 

author. Some of them considered evaluation of 

navigational situation within confined and congest-
ed areas of crossing routes [12]. In order to forecast 

and evaluate condition within confined region one 

has to engage possibilitic platform. Statement like: 
large vessels encounter at the crossing of heavy 

traffic routes create hazardous situation involves 
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fuzziness. Imprecision refers to classification of 

ships, sort of traffic and quality of condition.  

In another publication [13] uncertainty in floating 

objects detection ability by a group of monitoring 
stations was considered. Hereto synergetic effort is 

involved; cumulated ability of detection is of inter-

est. Common ability of discovering floating object 
by all station covering considered region under 

certain sea surface conditions is sought, extrapola-

tion, engaging approximate reasoning methods, for 
various conditions is required [14]. 

Uncertainty in available detections characteris-

tics and measurements distribution is common fea-

ture for all presented problems. Shortcomings of 
traditional mathematical apparatus caused that this 

sort of tasks were solved mainly based on the skill 

and more often on intuition of engaged navigation 
experts. 

Many tasks are realized under uncertainty re-

sulted from variable natural condition of measure-
ments or retrieving data from navigational aids. 

Variety of data quality can be subjectively classi-

fied, introducing this sort of hierarchy hardly mat-

ters since, there is not formal apparatus to include 
them into calculation scheme. Thus various quality 

data affects final solution in the same manner. 

Mathematical Theory of Evidence exploits be-
lief and plausibility measure and operates on belief 

functions. Belief function is a mapping that consists 

of pairs: vectors representing fuzzy locations of 

a set of points within sets related to each measure-
ment – degrees of confidence assigned to these 

vectors. Degrees of confidence reflect probability 

that a line of position is being located within given 
strip area or, during processing, position being lo-

cated inside two belts intersection region. Appro-

priate imprecise values are at disposal based upon 
statistical investigations of measurements distribu-

tions. In Mathematical Theory of Evidence belief 

structures combination is carried out [15, 16]. Dur-

ing combination all pairs of location vectors are 
associated and product of involved masses is as-

signed to the result set. Obtained assignment is 

supposed to increase informative context of the 
initial structures. Combination of structures em-

bracing measurements data is assumed to result in 

position fixing. The goal can be achieved provided 
selection of common points is carried out during 

association. In navigation points situated within 

intersection of introduced ranges are to be selected. 

Selection is done thanks to T-form operations [14] 
used during association [17]. The simplest T-form 

results in smaller values being taken from consecu-

tive pairs of associating elements. 

Position fixing 

Figure 1 shows traditional way of position fixing 

with three distances. Three circles intersect at three 

points in the vicinity of the fixed ship position. 
Assuming measured distances as mutually inde-

pendent random variables, the true position is 

somewhere inside obtained triangle. It is up to nav-
igator’s knowledge and experience to estimate the 

fix. The more accurate the measured distances, the 

smaller is the triangle and thus the better is the es-
timation of the fixed position. Obviously an experi-

enced navigator is able to verify acceptable dimen-

sions of such triangle. Intersection area, greater 

than an average, results in rejection of the observa-
tions. 

 

Fig. 1. Example of position fixing based on three imprecise 
distances 

The most common approach to analytical way of 
position fixing exploits the least square adjustment 

method. One has to find a point for which expres-

sion kwk
2
k reaches its minimum. Sum of 

weighted squared deflections k from the measured 
isolines is calculated. Weights wk introduce credi-

bility masses attributed to each of the taken dis-
tance. Traditional way of position fixing engages: 

1) available indications and/or measurements; 
2) characteristics of the measured values and type 

of distribution are not important, although nor-

mal distribution is widely assumed and ex-
ploited in the least square adjustment method; 

3) subjectively evaluated masses of credibility 

attributed to each of measurements included in 

analytical approach; 
4) measured values as random variable governed 

by normal distributions, as well as constellation 

of observed objects are considered in the fix  
accuracy estimation. 
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The main disadvantage of traditional approach is 

the lack of inherited method evaluating quality of 

the obtained fix. Unfortunately, existing form of 

accuracy estimation appears to be inadequate in 
many practical cases. 

In the previous papers [5, 18, 19] the author pre-

sented concept of engaging MTE extended for 
fuzzy environment to position fixing computation 

scheme. Possibilistic extension of the theory ap-

peared to be flexible enough to be used for reason-
ing on the fix, provided imprecise measurements 

and/or indications are available. Contrary to the 

traditional approach it enables embracing know-

ledge and uncertainty into calculations. Knowledge 
regarding position fixing includes: characteristics of 

random distributions of measuring values, as well 

as ambiguity and imprecision in obtained parame-
ters of such distributions. Moreover, observations 

can be differentiated by subjectively evaluated 

masses of confidence attributed to each of them. 
The solution proposed and used herein is based 

on Mathematical Theory of Evidence (MTE), ex-

tended to fuzzy environment [12] is more flexible 

as it enables considering of the following: 

1) available indications and/or measurements; 

2) various characteristics of the measured values; 
kind of distribution is important and may affect 

final solution; empirical and theoretical distribu-

tion can be considered; 
3) accuracy of measured distances, including abil-

ity of engaged aids, their lengths and character-

istic of the referenced object; 
4) imprecision in accuracy estimation

1
; 

5) subjectively evaluated masses of credibility 

attributed to each of measurement; 

6) inconsistencies of the computation process; 
7) fix adjustment in case of abnormal high incon-

sistency; 

8) evaluation of selected position quality is embed-
ded into computation scheme; plausibility, belief 

and inconsistency values enable direct assess-

ment of the fix; 
9) belief and plausibility measures instead of crisp 

valued probability are to be used once quality of 

the fix is evaluated; 

10) plausibility of the fix being located within adja-
cent area is easily available, thus reasoning on 

the fix accuracy appears to be straightforward. 

                                                   
1 In books devoted to navigation one can read that mean 

error attributed to measuring with particular aid is x, 

but reaching y (y > x) value is also possible. 

Notes on the fix accuracy estimation 

Traditional meaning of the fix accuracy is relat-

ed to a regular area around the fixed position. With-
in the area the true position of the ship is located 

with certain and equal degree of credibility. It is 

assumed that the area is of circular or elliptical 

shape within which the fix is located with the same 
probability. The latest is widely assumed although 

it is known that condition (1), that contradicts the 

statement, is to be observed. The formula expresses 
probability of the fix being located in point (x, y) as 

a function of probabilities of all isolines embracing 

given point along with credibility attributed to each 
of the measurements. 
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p  – probability that the fix is located in (x, y) 

point; 

),( yxio
p  – probability that the point (x, y) is located 

at the isoline related to i-th observation; 

i – credibility attributed to the i-th observa-

tion, subjectively evaluated quality of 
the measurement. 

In traditional practical approach formulas ena-

bling calculation of the radius or ellipse’s parame-
ters are derived for typical schemes of observations 

followed while a fix is being made [20, 21, 22]. 

Usually bearings and distances are taken. Two or 

three bearings combined with distances are often 
exploited for position fixing. Appropriate formula 

is to be engaged to evaluate mean error of the fix. 

Expression (2) (see [20]) is an example to be used 
when calculating mean error of the fix obtained 

with three distances. The formula engages mean 

errors of involved measurements and angles of 
intersection of lines of position. 
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where: 

mi – mean error the the i-th observation; 

1 – angle of intersection of the first and se-

cond isoline; 

2 – angle of intersection of the second and 
third isoline. 

Mean error of the fix is meant as circular area 
with the centre in the fix. Point representing fixed 

position is assumed to be located in geometric cen-

tre of a figure spanned over selected intersection 
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points of obtained isolines. The formula was  

derived based on normality of the measurement 

error distributions. It should be stressed that more 

observations engage even more complex formulas. 
For this reason expressions for greater number of 

measurements are impractical and usually not 

available in nautical publications.  
There is yet another drawback related to tradi-

tional way of accuracy estimation. The approach 

does not correlate quality of observations and accu-
racy of the obtained fix consequently contradicts 

expression (1). Figure 2 presents two cases of fixed 

positions and their accuracy estimations. It should 

be noted that estimations are the same in both cas-
es. Assuming the same scale and constellation of 

observed objects, as well as lack of constant errors 

in case a) quality of observations seems be poorer 
than in case b). Intersections of three isolines in 

case a) are spread over much larger area compared 

to right hand case. Thus accuracy of the fix b) 
seems be different than in case a). Unfortunately, in 

traditional approach accuracy estimation does not 

reflect real quality of the fix, although true the 

statement seems to be somewhat contradictory and 
illogic. Obviously supporters of the idea can claim 

that as long as measurements are random variables 

it may happen. Under this assumption accuracy 
estimations remain valid in both cases. Nonetheless 

allocation of isolines within area close to the fixed 

position seems important factor when accuracy is 

being a priori analyzed. 

 

Fig. 2. Two cases of fixed positions and their accuracy estima-
tions 

 

Fig. 3. Fixed position made with four indications delivered by 
various navigational aids 

In monographs devoted to nautical science [21, 

22] problem of making a fix based on indications 

delivered by various navigational aids (example 

shown in figure 3) is treated superficially, meaning-
less attention is devoted to accuracy of such fix. 

Authors suggest using Expression (3) to obtain 

hints on quality of the fix. 

 22
2

2
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Formula (3) estimates mean error provided 

standard deviations of involved indications are 

known. Calculated value is a length of the radius 
defining circle within which the fix is located with 

probability of 0.68. Particular instance of constella-

tion of indicated positions is not taken into account 
while estimating accuracy in this way. 

Another view at the fix accuracy 

In approach based upon MTE distribution of 

probabilities of the fix being located within ex-

plored area is embedded into methodology. Expres-
sion (1) is valid and engaged during calculation. 

Therefore, accuracy can be perceived as a cohesive 

area within which probability (plausibility) of the 

fix location is higher the required threshold value.  
Using possibilistic concept that has been ex-

plained in previous papers [5, 19] software tools 

have been implemented. The software was used to 
make the fix with four distances. Presented in fig-

ure 4 illustration include probability distribution for 

the fix being located in adjacent area. Distributions 
of figures denote plausibility of the fix within hy-

pothesis frame. Estimated mean errors of each ob-

servation [cables], as well as subjective evaluations 

of measurements are shown in the insertion. It was 
assumed that mean errors are interval valued. Pre-

sented error estimations should be treated as modal 

values of intervals [i – 0.1i, i + 0.1i]. Subjec-
tive assessments are modal for linguistic terms: 

“medium” and “very good” fuzzy values.  
Iterative procedure was implemented to make 

the fix [23]. In consecutive iterations decreasing 

search area was explored. Explored area embraces 
all maxima points selected in previous iterations. 

Grid of 1010 cells was spanned over the area in 
order to define hipothesis space. Distribution of the 

fix plausibility measures all over the area examined 

in the last iteration is shown in the centre part of 
figure. It should be noted that area within which 

probabilities reach their maxima is not a circular 

one. Instead irregular shape of cohesive area with 
highest plausibility measures represents the fix 

accuracy. 
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Representing uncertain evidence 
in nautical applications 

In possibilistic approach uncertain evidence is 

represented using fuzzy sets. Each set has assigned 

mass of confidence. Relations between hypothesis 

and evidence spaces are encoded into evidence 
representation. Sets (usually fuzzy ones [23]) em-

brace grades expressing possibilities of belonging 

of consecutive hypothesis items to the sets related 
to each piece of evidence. As already mentioned 

each of the sets has credibility mass assigned. Thus 

evidence mapping consist of “fuzzy set – probabil-

ity assigned to the set” pairs. Adequate mapping is 
expressed by Formula (4). 
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Herein in order to draw useful conclusions sim-
plified evidence representation will be considered. 

Three distances measured to different objects will 

be taken into account (see Fig. 5). The drawing also 
shows example set of points treated as hypothesis 

frame or a search space. Hypothesis points loca-

tions will be encoded in binary terms: for situated 

within considered area value of 1 is used, for those 
outside the range 0 is applicable. It should be em-

phasized that such simplification does not affect 

generality of the rational in sense of usefulness of 
drawn conclusions.  

Reducing scope of interest to measured dis-

tances sets related to each piece of evidence can be 

limited to the following items: e1  {d1}, e2  

{d2} and e3  {d3}. Thus membership function 

grades take the form of expression: i({xk}) = 

g({xk}  {d1,
 
d2,

 
d3}). The expression means that  

 

Fig. 5. Example of three distances and a set of hypothesis 
points 

membership grades are degrees of inclusion of hy-

pothesis points within evidence frames (in the ex-

ample they refer to circles confined by appropriate 
distance). Grades identify whether respective point 

is located closer to observed objects than measured 

distance. Considering single grade i{xk} one can 
use formula (5) to obtain its binary value: 
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where: d(xk) is the distance between k-th point and 
i-th observed landmark. 

Figure 4 presents example of distances taken to 
three different objects and a set of hypothesis 

points. Using formula (5) grades of sets related to 

taken distances were obtained and presented in 

table 1. Row headers named as: 1, 2, 3 show 

 

Fig. 4. Making the fix with four distances – output delivered by software implementing possibilistic approach towards position fixing 
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locations hypothesis points within sets related to 

measured isolines. Vectors together with assigned, 

example masses presented in the last column are 

constituents of the evidence representation as speci-
fied by formula (4). 

Table 1. Location vectors and results of their combinations 

 1 2 3 4 5 6 7 8 9 10 11 12 m(..) 

1 {1 0 0 1 1 0 1 1 0 1 1 0} 0.6 

2 {0 1 1 1 1 1 1 1 1 1 1 1} 0.5 

12 {0 0 0 1 1 0 0 1 0 1 1 0} 0.3 

3 {1 1 1 1 1 1 0 0 0 0 0 0} 0.7 

123 {0 0 0 1 1 0 0 0 0 0 0 0} 0.21 

 

Two evidence representations can be combined. 

Result grades of membership functions are selected 
using T-norm operation; for calculation details see 

previous publications [8, 23]. In the first step of 

combination data in row 12 were obtained. Next 
the same procedure was used to associate row 

12 and row 3. Two steps combination yields 

data presented in row 123. It should be noted 
that result set embraces two points situated within 

common area for three circles related to taken dis-
tances. It was achieved thanks to T-norm operation 

used during association. 

Summary and conclusions 

In the paper comparison of traditional way of 

position fixing and approach based on theory of 

evidence was presented. Main advantage of the 
proposed scheme of reasoning is that it engages 

possibilistic approach [24]. The approach is justi-

fied whenever insufficient data samples are availa-

ble. It is quite often when dealing with estimations 
of measurements distributions. Possibilistic mecha-

nisms engage belief and plausibility measures. Ad-

equate formulas were derived based on exploration 
of knowledge base obtained as a result of evidence 

combination. 

In proposed approach knowledge included into 
computational scheme is something what creates 

new opportunity. New standpoint for perceiving 

accuracy of the fix is possible when using reason-

ing mechanism. Traditional understanding and es-
timating of accuracy is inadequate in most cases. 

Appropriate formulas are intended for particular 

observations schemes that include at most three 
measurements. Although basic set of data (mean 

errors and constellation of observed objects) are 

included in accuracy estimation, applying the same 

mean error measure for different distributions of 
isolines seems unjustified. In the new approach 

accuracy estimation is embedded into reasoning 

scheme. Obtained results emphasize obvious short-

comings of the traditional approach. 
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