Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Nitrous oxide emission during wastewater treatment
Języki publikacji
Abstrakty
Około 7,9% globalnej emisji gazów cieplarnianych stanowi podtlenek azotu. Jednocześnie N2O jest 310 razy bardziej skuteczny w pochłanianiu ciepła niż dwutlenek węgla. Dane te wskazują, że związek może mieć szkodliwy wpływ na środowisko naturalne, wobec czego należy ograniczyć jego emisję. Niewątpliwą przeszkodą jest fakt, iż działania proekologiczne – takie jak oczyszczanie ścieków – mogą pogłębiać emisję szkodliwego gazu. Ostatnie badania dowiodły, że oczyszczalnie ścieków korzystające z systemu biologicznego usuwania azotu mogą emitować do 7% usuwalnego azotu w postaci gazowej – w formie N2O i NO. Podtlenek azotu uwalnia się głównie podczas procesów nitryfikacji i denitryfikacji. Zbadane dotychczas wartości emisji wahają się znacznie w zależności od typu oczyszczalni, nieznany jest jednak dokładny wpływ czynnik zewnętrznych na przebieg reakcji. Nie wiadomo również dokładnie, który dokładnie proces – nitryfikacja czy denitryfikacja, jest główną przyczyną formowania się związku. W rzeczywistości formowanie się podtlenku azotu zaobserwowano zarówno podczas osobnego procesu nitryfikacji i denitryfikacji, jak i w systemach, gdzie oba procesy występowały razem. Zaobserwowano również istotny wpływ czynników zewnętrznych (temperatura, stężenie tlenu rozpuszczonego, pH) na wielkość emisji N2O, jednak wciąż nie znamy dokładnie przebiegu tego procesu.
Nitrous oxide accounts for 7,9% global emission of greenhouse gases. At the same time N2O is 310 time more effective absorbing the heat than carbon dioxide. Given data indicate that compound can have a harmful impact on natural environment, towards its emission should be reduced. Main obstacle is the fact that pro-ecological actions such as wastewater treatment cause that emission of harmful gas. Last researches proved that Wastewater Plants using biological system of removing nitrogen can emit up to 7% of gaseous nitrogen - under the N2O and NO form. Nitrous oxide is released mainly during nitrification and denitrification processes. Scientific researches proved that emission values vary mainly according to the type of the Wastewater Plant, although the influence of the external factors on the course of reaction is still uncertain. It in unknown which particular process – nitrification or denitrification is the main cause of forming the compound of nitrous oxide. Formation of nitrous oxide was observed during separate process of nitrification and denitrification, and as well when both of these processes occurred together simultaneously. Essential influence of external factors on the emission of N2O was noticed, although its precise course is still unknown.
Słowa kluczowe
Rocznik
Tom
Strony
53--61
Opis fizyczny
Bibliogr. 38 poz., rys.
Twórcy
autor
- Katedra Inżynierii Sanitarnej, Wydział Inżynierii Lądowej i Środowiska, Politechnika Gdańska
Bibliografia
- [1] IPCC [2007]. Climate Change 2007: Synthesis Report. Intergovernmental Panel on Climate Change, Geneva, Switzerland, a. 104.
- [2] Ahn J.-H., Kim S., Katehis D., Pagilla K. und Chandram K.: Spatial and temporal variability in N2O generation and emission from WWTPs. WEF Nutrient Conference 2009, s. 4504-4511.
- [3] Jian MAO, Xiao-Qin JIANG: Nitrous Oxide Production in a Sequence Batch Reactor Wastewater Treatment System Using Synthetic Wastewater, 2006, s. 451-456
- [4] Beier M.; Seyfried C.-F.: N2O-Bildung bei der Nitrifikation und Denitrifikation in Kläranlagen unter besonderer Berücksichtigung hochkonzentrierter Industrieabwaesser und der anaerohen Vorbehandlung [02 WA 910 29 TP 3] [N20 Production from Nitrification and Denitrification in WWTP, Especially for High-strength Industrial Wastewater and Anaerobic Pretreatment]. In: Schlussbericht 1991-1993, N20 in Klaeranlagen; Stuttgart, Germany 1994.
- [5] Kampschreur M.J., Temmink H., Kleerebezem R., Jetten M.S.M. and van Loosdrecht M.C.M.: Nitrous oxide emission during wastewater treatment. Water Res., 43, 2009, s. 4093-4103.
- [6] Konneke M., Bernhard A.E., de la Torre J.R., Walker Christopher B., Waterbury J.B., Stahl D.A.: Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437 [7038], 2005, s. 543- 546.
- [7] Anderson I.C., Poth M., Homstead J., Burdige D.: A comparison of nitric oxide and nitrous oxide production by the autotrophic nitrifier Nitrosomonas europaea and the heterotrophic nitrifier Alcaligenes faecalis. Applied and Environmental Microbiology 59 [11], 1993, s. 3525-3533.
- [8] Van Hulle S.W.H., Vandeweyer H.J.P., Meesschaert B.D., Vanrolleghem P.A., Dejans P., Dumoulin A.: Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chem. Eng. J., 162, 2010, s. 1-20.
- [9] Abeliovieh A.: Transformations of ammonia and the environmental impact of nitrifying bacteria. Biodegradation. Environmental Microbiology 1992, s. 255-264.
- [10] Peng Y., Zhu G., Biological nitrogen removal with nitrification and denitrification via nitrite pathway. Applied Microbiology and Biotechnology 73, 2006, s. 15-26.
- [11] Mulder A., Vandegraaf A. A., Robertson L.A. and Kuenen J.G.: Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microb. Ecol., 16, 1995, s. 177-183.
- [12] Robertson L.A., Cornelisse R., Devos P., Hadioetomo R., Kuenen J.G.: Aerobic denitrification in various heterotrophic nitrifiers. Antonie van Leeuwenhoek 56 [4], 1989, s. 289-299.
- [13] Bock E., Schmidt I., Stuven R., Zart D.: Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Archives of Microbiology 163 [1], 1995, s. 16-20.
- [14| Colliver B.B.; Stephenson T: Production of Nitrogen Oxide and Dinitrogen Oxide by Autotrophic Nitrifiers. Biotechnol. Adv., 18 [3], 2000, s. 219-232.
- [15] Kartal B., Kuypers M.M.M., Lavik G., Schalk J., OpdenCamp H.J.M., Jetten M.S.M. Strous M. : Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environmental Microbiology 9 [3], 2007, s. 635-642.
- [16] Jetten M., Schmid M., van de Pas-Schoonen K., Damste J.S.S. and Strous M.: Anammox organisms: enrichment, cultivation, and environmental analysis. In: Leadbeller JR |ed| Environmental Microbiology, vol 397. Methods in ezymology, Elsevier Academic Press, California, 2005, s. 34-57.
- [17] Siegrist H.: Nitrogen loss in a nitrifying rotating contactor treating ammonium-rich wastewater with-out organic carbon. Water Science & Technology 38, 1998, 8-9.
- [18] Chouari R.: Molecular evidence for novel planctomycete diversity in amunicipal wastewater treatment plant. Applied & Environmental Microbiology 69, 2003.
- [19] Kuypers M.: Anaerobic ammonium oxidation by anammox bacteria in the Black Sea, Nature 422, 2003.
- [20] Dalsgaard T., Thamdrup B.: Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Applied & Environmental Microbiology 68, 2002.
- [21] Seviour R.J., Per Halkjaer Nielsen: Microbial ecology of activated sludge. 2005.
- [22] Otte S., Grobben N.G., Robertson L.A., Jetten M.S.M., Kuenen J. G.: Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions Applied and environmental Microbiology 62 [7], 1996, s. 2421-2426.
- [23] Kimochi Y., Inamori Y., Mizuochi M., Xu K.-O., Matsumura M.: Nitrogen removal and N2O emission in a full-scale domestic wastewater treatment plan, with intermittent aeration. Journal of Fermentation and Bioengineering 86 [2], 1998, s. 202-206.
- [24] Zeng R.J., Yuan Z., Keller J.: Enrichment of denitrifying glycogen-accumulating organisms in anaerobic/anoxin activated sludge system. Biotechnology and Bioengineering 81 [4]. 2003b, s. 397-404.
- [25] van Benthum W.A.J., Garrido J.M., Mathijssen J.P.M., Sunde J., van Loosdreeht M.C.M., Heijnen J.J.: Nitrogen removal in intermittently aerated biofilm airlift reactor. Journal of Environmental Engineering 124 [3], 1998, s. 239-248.
- [26] Zheng H., Hanaki K., Matsuo T.: Production of nitrous oxide gas during nitrification of wastewater. Water Science and Technology 30 [6], 1994, s. 133-141.
- [27] Tallec G., Gamier J., Billen G., Gousailles M.: Nitrous oxide emissions from secondary activated sludge in nitrifying conditions of urban wastewater treatment plants: effect of oxygenation level Water Research 40 [15], 2006a., s. 2972-2980.
- [28] Kampschreur M.J., Ian N.C.G., Kleerebezem R., Picioreanu C., Jetten M.S.M., van Loosdrecht M.C.M.: Effect of dynamic process conditions on nitrogen oxides emission from a nitrifying culture. Environmental Science and Technology 42 [2], 2008a, s. 429-435.
- [29] Schulthess, R.V., Kuehni, M., Gujer, W.: Release of nitric and nitrous oxides from denitrifying activated sludge. Water Research 29 [1], 1995, s. 215-226.
- [30] Garrido J.M., Moreno J., Mendez-Pampin R., Lema J.M.: Nitrous oxide production under toxic conditions in a denitrifying anoxic filter. Water Research 32 [8], I995, s. 2550-2552.
- [31] Schulthess R.V., Gujer W.: Release of nitrous oxide [N2O] from denitrifying activated sludge: verification and application of a mathematical model. Water Research 30 [3], 1996, s. 521-530.
- [32] Chung Y.-C, Chung M.-S.: BNP test to evaluate the influence of C/N ratio on N20 production in biological denitrification. Water Science and technology 42 [3-4], 2000, s. 23-27.
- [33] Hanaki K., Hong Z., Matsuo T.: Production of nitrous oxide gas during denitrification of wastewater. Water Science and technology 26 [5-6], 1992, s. 1027-1036.
- [34] Itokawa H., Hanaki K., Matsuo T.: Nitrous oxide production in high-loading biological nitrogen removal process under low COD/N ratio condition. Water Research 35 [3], 2001, s. 657-664.
- [35] Hynes R.K., Knowles R.: Production of nitrous oxide by Nitrosomonas europaea: effects of acetylene, pH, and oxygen. Canadian Journal of Microbiology 30 [11], 1984, 1397-1404.
- [36] Thoern M., Soerensson F.: Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal. Water Research 30 [6], 1996, s. 1543-1547.
- [37] Schonharting B., Rehner R., Metzger J.W., Krauth K., Rzzii M.: Release of nitrous oxide [N20] from denitrifying activated sludge caused by H2S-containing wastewater: quantification and application of a new mathematical model. Water Science and technology 38 [1], I998, s. 237-246.
- [38] Hermanowicz W.: Fizyczno-chemiczne badanie wody i ścieków. Warszawa: Arkady 1999.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-971670be-16cf-4721-b810-b24e92098032