PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Carbon nanotubes with controlled length – preparation, characterization and their cytocompatibility effects

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Multiwalled carbon nanotubes (MWCNTs) have attracted huge attention due to their multifunctionality. Their unique properties allows for covalent and noncovalent modifi cations. The most simple method for functionalization of carbon nanotubes is their decoration with the oxygen containing moieties which can be further simultaneously functionalized for design of new class carriers for targeting and imaging. Here, we present methodology for chopping nanotubes, characterization of MWCNTs, the effect of size on the biocompatibility in culture of L929 mouse fi broblasts using WST-1, LDH and apoptosis assays. The analysis provides the optimal carbon nanotubes length and concentration which can be used for functionalization in order to minimize the effect of the secondary agglomeration when interacting with cells.
Rocznik
Strony
71--79
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • West Pomeranian University of Technology, Szczecin, Nanomaterials Physicochemistry Department, Faculty of Technology and Chemical Engineering, Piastow Avenue 45, Szczecin 70-311, Poland
  • West Pomeranian University of Technology, Szczecin, Laboratory of Molecular Cytogenetic, Klemensa Janickiego 29, Szczecin 71-270, Poland
Bibliografia
  • 1. Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56–58. DOI: 10.1038/354056a0.
  • 2. Donaldson, K., Aitken, R., Tran, L., Stone, V., Duffin, R., Forrest, G. & Alexander, A. (2006). Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol. Sci. 92, 5–22. DOI: 10.1093/toxsci/kfj130.
  • 3. Chen, X., Chen, H., Tripisciano, C., Jedrzejewska, A., Rümmeli, H.M., Klingeler, R., Chu, P.K. & Borowiak-Palen, E. (2011). Carbon-nanotube-based stimuli-responsive controlledrelease system. Chem. Eur. J. 17, 4454–4459. DOI: 10.1002/chem.201003355.
  • 4. Kumar, A.P., Hul, Y., Yamamoto, Y., Hoe, N.B., Wie, T.S., Mu, D., Sun, Y., Joo, L.S., Dagher, R., Zielonka, L.M., Wang, D.Y., Lim, B., Chow, V. T., Crum, C .P., Xian, W. & McKeon, F. ( 2011). Distal airway s tem cells yield alveoli in v itro and during lung regeneration following H1N1 influenza infection. Cell, 147, 525–538. DOI: 10.1016/j.cell.2011.10.001.
  • 5. Meng, L., Zhang, X., Lu, Q., Fei, Z. & Dyson, P.J. (2012). Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials, 33, 1689–1698. DOI: 10.1016/j.biomaterials.2011.11.004.
  • 6. Lacerda, L., Bianco, A., Prato, M. & Kostarelos, K. (2006). Carbon nanotubes as nanomedicines: from toxicology to pharmacology. Adv. Drug Delivery Rev. 58, 1460–1470. DOI: 10.1016/j.addr.2006.09.015.
  • 7. Lam, C.W., James, J.T., McCluskey, R., Arepalli, S. & Hunter, R.L. (2006). A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks. Rev. Toxicol. 36, 189–217. DOI: 10.1080/10408440600570233.
  • 8. Markovic, M.Z., Harhaji-Trajkovic, L.M., Todorovic-Markovic, B.M., Kepić, D.P., Arsikin, K.M., Jovanović, S.P., Pantovic, A.C., Dramićanin, M.D. & Trajkovic, V.S. (2011). In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials, 32, 1121–1129. DOI: 10.1016/j.biomaterials.2010.10.030.
  • 9. Sahithi, K., Swetha, M., Ramasamy, K., Srinivasan, N. & Selvamurugan, N. (2010). Polymeric composites containing carbon nanotubes for bone tissue engineering. Int. J. Biol. Macromol. 46, 281–283. DOI: 10.1016/j.ijbiomac.2010.01.006.
  • 10. Elgrabli, D., Abella-Gallart, S., Robidel, F., Rogerieux, F., Boczkowski, J. & Lacroix, G. (2008). Induction of apoptosis and absence of inflammation in ratlung after intratracheal instillation of multiwalled carbon nanotubes. Toxicology, 253, 131–136. DOI: 10.1016/j.tox.2008.09.004.
  • 11. De Nicola, M., Gattia, D.M., Bellucci, S., Bellis, G.D., Micciulla, F., Pastore, R., Tiberia, A., Cerella, C., D’Alessio, M., Antisari, M.V., Marazzi, R., Traversa, E., Magrini, A., Bergamaschi, A. & Ghibelli, L. (2007). Effect of different carbon nanotubes on cell viability and proliferation. J. Phys: Condens. Matter. 19, 395013–395020. DOI: 10.1088/0953-8984/19/39/395013.
  • 12. Cui, D., Tian, F.C.S., Wang, M. & Gao, H. (2005). Effect of single-wall carbon nanotubes on human HEK293 cells. Toxicol. Lett. 155, 73–85. DOI: 10.1016/j.toxlet.2004.08.015.
  • 13. Suh, W.H., Suslick, K.S., Stucky, G.D. & Suh, Y.H. (2009). Nanotechnology, nanotoxicology, and neuroscience. Prog. Neurobiol. 87, 133–170. DOI: 10.1016/j.pneurobio. 2008.09.009.
  • 14. Wang, X., Podila, R., Shannahan, J.H., Rao, A.M. & Brown, J.M. (2011). Intravenously delivered graphene nanosheets and multiwalled carbon nanotubes induce site-specific Th2 inflammatory responses via the IL-33/ST2 axis. Chem. Res. Toxicol. 24, 2028–2039. DOI: 10.2147/IJN.S44211.
  • 15. Bekyarova, E., Haddon, R.C. & Parpura, V. (2007). Biofunctionalization of carbon nanotubes. NTLS. DOI:10.1002/9783527610419.ntls0002.
  • 16. Kagan, V.E., Konduru, N.V., Feng, W., Allen, B.L., Conroy, J., Volkov, Y., Vlasova, I.I., Belikova, N.A., Yanamala, N., Kapralov, A., Tyurina, Y.Y., Shi, J., Kisin, E.R., Murray, A.R., Franks, J., Stolz, D., Gou, P., Klein-Seetharaman, J., Fadeel, B., Star, A. & Shvedova, A.A. (2010). Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nature Nanotech. 5, 354–359. DOI: 10.1038/nnano.2010.44.
  • 17. Li, J.Z. & Zhang, Y.F. (2006). Cutting of multi walled carbon nanotubes. Appl. Surf. Sci. 252, 2944–2948. DOI: 10.1016/j.apsusc.2005.04.039.
  • 18. Peng, J., Qu, X.X., Wei, G.S., Li, J.Q. & Qiao, J.L. (2004). The cutting of MWNTs using gamma radiation in the presence of dilute sulfuric acid. Carbon, 42, 2741–2744. DOI: 10.1016/j.carbon.2004.05.015.
  • 19. Gu, Z., Peng, H., Hauge, R.H., Smalley, R.E. & Margrave, J.L. (2002). Cutting single-wall carbon nanotubes through fluorination. Nano Lett. 2, 1009–1013. DOI: 10.1021/nl025675+.
  • 20. Wang, X.X., Wang, J.N., Su, L.F. & Niu, J.J. (2006). Cutting of multi-walled carbon nanotubes by solid-state reaction. J. Mater. Chem. 16, 4231–4234. DOI: 10.1039/B609231D.
  • 21. Pierard, N., Fonseca, A., Konya, Z., Willems, I., Tendeloo, G.V. & Nagy, J.B. (2001). Production of short carbon nanotubes with open tips by ball milling. Chem. Phys. Lett. 335, 1–8. DOI: 10.1016/S0009-2614(01)00004-5.
  • 22. Konya, Z., Vesselenyi, I., Niesz, K., Kukovecz, A., Demortier, A., Fonseca, A., Delhalle, J., Mekhalif, Z., Nagy, J.B., Koos, A.A., Osváth, Z., Kocsonya, A., Biró, L.P. & Kiricsi, I. (2002). Large scale production of short functionalized carbon nanotubes. Chem. Phys. Lett. 360, 429–435. DOI: 10.1016/S0009-2614(02)00900-4.
  • 23. Kukovecz, K., Kanyo, T., Konya, Z. & Kiricsi, I. (2005). Long-time low impact ball milling of multi-wall carbon nanotubes. Carbon, 43, 994–1000. DOI: 10.1016/j.carbon.2004.11.030.
  • 24. Koshio, A., Yudasaka, M., Zhang, M. & Iijima, S. (2001). A simple way to chemically react single-wall carbon nanotubes with organic materials using ultrasonication. Nano Lett. 1, 361–363. DOI: 10.1021/nl0155431.
  • 25. Shimada, T., Yanase, H., Morishita, K., Hayashi, J.I. & Chiba, T. (2004). Points of onset of gasifi cation in a multi-walled carbon nanotube having an imperfect structure. Carbon, 42, 1635–1639. DOI: 10.1016/j.carbon.2004.02.019.
  • 26. Li, Q.W., Yan, H., Ye, Y.C., Zhang, J. & Liu, Z.F. (2002). Defect location of individual single-walled carbon nanotubes with a thermal oxidation strategy. J. Phys. Chem. B. 106, 11085–8. DOI: 10.1021/jp026512c.
  • 27. Kirk, J., Ziegler, K.J., Gu, Z., Shaver, J., Chen, Z., Flor, E.L., Schmidt, D.J., Chan, C., Hauge, R.H. & Smalley, R.E. (2005). Cutting single-walled carbon nanotubes. Nanotechnology, 16: S539–S544. DOI: 10.1088/0957-4484/16/7/031.
  • 28. Wang, C., Guo, S., Pan, X., Chen, W. & Bao, X. (2008). Tailored cutting of carbon nanotubes and controlled dispersion of metal nanoparticles inside their channels. J. Mater. Chem. 18, 5782–5786. DOI: 10.1039/B811560E.
  • 29. Hennrich, F., Krupke, R., Arnold, K., Stu1tz, J.A.R., Lebedkin, S., Koch, T., Schimmel, T. & Kappes, M.M. (2007). The mechanism of cavitations-induced scission of single-walled carbon nanotubes. J. Phys. Chem. B. 111, 1932-1937. DOI: 10.1021/jp065262n.
  • 30. Cheng, Q., Debnath, S., Gregan, E. & Byrne, H.J. (2010). Ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent properties. J. Phys. Chem. C. 114, 8821-8827. DOI: 10.1021/jp101431h.
  • 31. Nagai, H., Okazaki, Y., Chew, S.H., Misawa, N., Yamashita, Y., Akatsuka, S., Ishihara, T., Yamashita, K., Yoshikawa, Y., Yasui, H., Jiang, L., Ohara, H., Takahashi, T., Ichihara, G., Kostarelos, K., Miyata, Y., Shinohara, H. & Toyokuni, S. (2011). Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proc. Natl. Acad. Sci. USA 108, E1330–E1338. DOI: 10.1073/pnas.1110013108.
  • 32. Sohaebuddin, S.K., Thevenot, P.T., Baker, D., Eaton, J.W. & Tang, L. (2010). Nanomaterial cytotoxicity is composition, size and cell type dependent. Part Fibre Toxicol. 7, 22. DOI: 10.1186/1743-8977-7-22.
  • 33. Stern, S.T., Adiseshaiah, P.P. & Crist, R.M. (2012). Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterials toxicity. Part Fibre Toxicol. 9, 20. DOI: 10.1186/1743-8977-9-20.
  • 34. Gratton, S.E., Rapp, P.A., Pohlhaus, P.D., Luft, J.C., Madden, V.J., Napier, M.E. & DeSimone, J.M. (2008). The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. USA 105, 11613–11618. doi: 10.1073/pnas.0801763105.
  • 35. Fraczek-Szczypta, A., Menaszek, E. & Blazewicz, S. (2011). Some observations on carbon nanotubes susceptibility to cell phagocytosis. J. Nanomater. 473516–473524. DOI: org/10.1155/2011/473516.
  • 36. Wick, P., Manser, P., Limbach, L.K., Dettlaff-Weglikowska, U., Krumeich, F., Roth, S., Stark, W.J. & Bruinink, A. (2007). The degree and kind of agglom eration affect carbon n anotube cytotoxicity. Toxicol. Lett. 168, 121–131. DOI: 10.1016/j.toxlet.2006.08.019.
  • 37. Fotakis, G. & Timbrell, J.A. (2006). In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma celllies following exposure to cadmium chloride. Toxicol. Lett. 160, 171–177. DOI: 10.1016/j.toxlet.2005.07.001.
  • 38. Davoren, M., Herzog, E., Casey, A., Cottineau, B. & Chambers, G. (2007). In vitro toxicity evaluation of single walled carbon nanotubes on human A549 lung cells. Toxicol. In Vitro. 21, 438–448. DOI: 10.1016/j.tiv.2006.10.007.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9715a3d3-3cfa-4447-b011-51ac71f2afe8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.