PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of the inflow of Vistula river waters on the pelagic zone in the Gulf of Gdańsk

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The biomass, production, composition of autotrophic phytoplankton and hetero-trophic bacteria were studied along with environmental and biological parameters. Samples were taken from Vistula river water (at Kiezmark) and from the river plume to the outer stations in the Gulf of Gdańsk (Baltic Sea) in June 2005. The phytoplankton biomass gradient appeared to be simply the result of dilution of the river water in the sea water, whereas the bacterial abundance and biomass dropped between the river station and the first sea water stations, a decrease that cannot be explained by the dilution effect. The Vistula water stimulated the production mainly of bacterioplankton but also of phytoplankton in the river plume as compared to rates measured in Vistula waters and at the open sea stations. However, this stimulation did not result in a measurable increase in biomasses, probably because of the short retention time of water in the river plume. Phytoplankton production was correlated with phytoplankton biomass (Chl a), while bacterial production was correlated with phytoplankton production and phytoplankton biomass (Chl a).
Czasopismo
Rocznik
Strony
859--886
Opis fizyczny
Bibliogr. 63 poz., tab., wykr.
Twórcy
  • Pomeranian University in Słupsk, K. Arciszewskiego 22a, 76-200 Słupsk, Poland
autor
  • National Marine Fisheries Research Institute, H. Kołłątaja 1, 81-332 Gdynia, Poland
  • Pomeranian University in Słupsk, K. Arciszewskiego 22a, 76-200 Słupsk, Poland
autor
  • National Marine Fisheries Research Institute, H. Kołłątaja 1, 81-332 Gdynia, Poland
autor
  • Pomeranian University in Słupsk, K. Arciszewskiego 22a, 76-200 Słupsk, Poland
autor
  • National Marine Fisheries Research Institute, H. Kołłątaja 1, 81-332 Gdynia, Poland
autor
  • National Marine Fisheries Research Institute, H. Kołłątaja 1, 81-332 Gdynia, Poland
autor
  • Russian Federal Research Institute of Fisheries & Oceanography (VNIRO), V. Krasnoselskaya 17, 107140 Moscow, Russia
autor
  • Russian Federal Research Institute of Fisheries & Oceanography (VNIRO), V. Krasnoselskaya 17, 107140 Moscow, Russia
autor
  • Russian Federal Research Institute of Fisheries & Oceanography (VNIRO), V. Krasnoselskaya 17, 107140 Moscow, Russia
Bibliografia
  • 1. Agatova A. I., Lapina N. M., 1994, Estimation of rates of the organic matter transformation and nutrients regeneration in the Bering Sea, Hydrobiology, 21(2), 217-225.
  • 2. Agatova A. I., Lapina N.M., Torgunova N., Kirpichev K., 2001, Biochemical study of brackish-water marine ecosystems, Water Resour., 28(4), 428-437, http://dx.doi.org/10.1023/A:1010401907179
  • 3. Agatova A.I., Sapoznikov V., Vintovkin V.R., 1985, The effect of activity of seston phosphatase on the rate of phosphorus mineralization and its turnover in production-destruction cycle, Okeanologiya, 25, 66-73.
  • 4. Amann R.I., Binder B.J., Olson R.J., Chisholm S.W., Devereux R., StahlD.A., 1990, Combination of 16S rRNA-targeted oligonucleotide probes with ow cytometry for analyzing mixed microbial populations, Appl. Environ. Microbiol., 56(6), 1919-1925.
  • 5. Ameryk A., Podgórska B., Witek Z., 2005, The dependence between bacterial production and environmental conditions in the Gulf of Gdańsk, Oceanologia, 47(1), 27-45.
  • 6. Ǽrtebjerg Nielsen G., Bresta A.-M., 1984, Guidelines for the measurement of phytoplankton primary production, The Baltic Mar. Biol. Publ. 1, Denmark, 23 pp.
  • 7. Bouvier T.C., del Giorgio P.A., 2002, Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries, Limnol. Oceanogr., 47(2), 453-470, http://dx.doi.org/10.4319/lo.2002.47.2.0453
  • 8. Bralewska J.M., 1992, Cycling seasonal fluctuations of the phytoplankton biomass and composition in the Gdansk Basin in 1987-1988, Proc. 1992 ICES Meeting, Copenhagen, 40 pp.
  • 9. Cauwet G., 2002, DOM in the coastal zone, [in:] Biogeochemistry of marine dissolved organic matter, D. A. Hansell & C.A. Carlson (eds.), Acad. Press, San Diego, 579-609.
  • 10. Chin-Leo G., Benner R., 1992, Enhanced bacterioplankton production and respiration at intermediate salinities in the Mississippi River plume, Mar. Ecol.-Prog. Ser., 87, 87-103, http://dx.doi.org/10.3354/meps087087
  • 11. Chróst R.J., 1991, Microbial enzymes in aquatic environments, Springer-Verlag, New York, 385 pp., http://dx.doi.org/10.1007/978-1-4612-3090-8
  • 12. Chróst R.J., Siuda W., 2006, Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic layer in the pelagial zone of lakes along a eutrophication gradient, Limnol. Oceanogr., (1, part 2), 749-762, http://dx.doi.org/10.4319/lo.2006.51.1_part_2.0749
  • 13. Cole J.J., Findlay S., Pace M.L., 1988, Bacterial production in fresh and saltwater ecosystems: a cross-system overview , Mar. Ecol.-Prog. Ser., 43, 1-10, http://dx.doi.org/10.3354/meps043001
  • 14. Cottrell M.T., Kirchman D.L., 2003, Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary, Limnol. Oceanogr., 48(1), 168-178, http://dx.doi.org/10.4319/lo.2003.48.1.0168
  • 15. Crump B.C., Hopkinson C.S., Sogin M.L., Hobbie J.E., 2004, Microbial Biogeography along an estuarine salinity gradient: combined influences of bacterial growth and residence time, Appl. Environ. Microbiol., 70(3), 1494-1505, http://dx.doi.org/10.1128/AEM.70.3.1494-1505.2004
  • 16. del Giorgio P.A., Cole J.J., 1998, Bacterial growth efficiency in natural aquatic systems, Annu. Rev. Ecol. Syst., 29, 503-541, http://dx.doi.org/10.1146/annurev.ecolsys.29.1.503
  • 17. Edler L., 1979, Recommendations on methods for marine biological studies in the Baltic Sea, phytoplankton and chlorophyll, Baltic Mar. Biol. Publ., 5, 24 pp.
  • 18. Evans C.A., O’Reilly J.E., Thomas J.P., 1987, A handbook for measurement of chlorophyll a and primary productivity, BIOMASS Sci. Ser., 8, 114 pp.
  • 19. Findlay S.M.L., Pace D.L., Cole J.J., Caraco N.F., Peierls B., 1991, Weak coupling of bacterial and algal production in a heterotrophic ecosystem: the Hudson River estuary, Limnol. Oceanogr., 36(2), 268-278, http://dx.doi.org/10.4319/lo.1991.36.2.0268
  • 20. Fuhrman J.A., Azam F., 1980, Bacterioplankton secondary production estimates for coastal waters of British Columbia, Antarctica and California, Appl. Environ. Microbiol., 39(6), 1085-1095.
  • 21. Gasiūnaitė Z.R., Cardoso A.C., Heiskanen A.-S., Henriksen P., Kauppila P., Olenina I., Pilkaitytė R., Purina I., Razinkovas A., Sagert S., Schubert H., Wasmund N., 2005, Seasonality of coastal phytoplankton in the Baltic Sea: influence of salinity and eutrophication, Estuar. Coast Shelf Sci., 65(1-2), 239-52.
  • 22. Glöckner F.O., Fuchs B.M., Amann R., 1999, Bacterioplankton composition of lakes and oceans: a first comparison based on fluorescence in situ hybridization, Appl. Environ. Microbiol., 65, 3721-3726.
  • 23. Grelowski A., Wojewódzki T., 1996, The impact of the Vistula River on the hydrological conditions in the Gulf of Gdańsk in 1994, Bull. Sea Fish. Inst., 137, 23-33.
  • 24. Gromisz S., Witek Z., 2001, Main phytoplankton assemblages in the Gulf of Gdańsk and the Pomeranian Bay from 1994 to 1997, Bull. Sea Fish. Inst., 153, 31-51.
  • 25. HELCOM, 2001, Manual for marine monitoring in the COMBINE programme of HELCOM. Part C. Programme for monitoring of eutrophication and its effects. Annex C-6: Phytoplankton species composition, abundance and biovolume, Baltic Marine Environment Protection Commission, Helsinki, [http://www.helcom.fi/groups/monas/CombineManual/AnnexesC/enGB/annex6/].
  • 26. HELCOM, 2004, The fourth Baltic Sea pollution load compilation (PLC-4), Balt. Sea Environ. Proc. No. 93, 188 pp.
  • 27. Herlemann D. P.R., Labrenz M., Jürgens K., Bertilsson S., Waniek J.J., Andersson A.F., 2011, Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea, ISME J., 5, 1571-1579, http://dx.doi.org/10.1038/ismej.2011.41
  • 28. Hobbie J.E., Daley R.J., Jasper S., 1977, Use of nuclepore filters for counting bacteria by fluorescence microscopy, Appl. Environ. Microbiol., 33, 1225-1228.
  • 29. Jost G., Pollehne F., 1998, Coupling of autotrophic and heterotrophic processes in a Baltic estuarine mixing gradient (Pomeranian Bight), Hydrobiologia, 363(1-3), 107-115, http://dx.doi.org/10.1023/A:1003109302187
  • 30. Kirchman D.L., 2002, The ecology of Cytophaga-Flavobacteria in aquatic environments, FEMS Microbiol. Ecol., 39(2), 91-100, http://dx.doi.org/10.1111/j.1574-6941.2002.tb00910.x
  • 31. Kirchman D. L., Dittel A.I., Malmstrom R.R., Cottrell M.T., 2005, Biogeography of major bacterial groups in the Delaware Estuary, Limnol. Oceanogr., 50(5), 1697-1706, http://dx.doi.org/10.4319/lo.2005.50.5.1697
  • 32. Kuparinen J., 1988, Development of bacterioplankton during winter and early spring at the entrance to the Gulf of Finland, Baltic Sea, Verh. Int. Verein. Limnol., 23, 1869-1878.
  • 33. Lee D.Y., Keller D.P., Crump B.C., Hood R.R., 2012, Community metabolism and energy transfer in the Chesapeake Bay estuarine turbidity maximum, Mar. Ecol.-Prog. Ser., 449, 65-82, http://dx.doi.org/10.3354/meps09543
  • 34. Lowry O.H., Rosebrough N.J., Fair A.L., Randall R.J., 1951, Protein measurement with the Folin phenol reagent, J. Biol. Chem., 193, 265-275.
  • 35. Manz W., Amann R., Ludwig W., Wagner M., Schleifer K.-H., 1992, Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions, Syst. Appl. Microbiol., 15, 593-600, http://dx.doi.org/10.1016/S0723-2020(11)80121-9
  • 36. Matciak M., Nowacki J., 1995, The Vistula river discharge front - surface observations, Oceanologia, 37(1), 75-88.
  • 37. Menden-Deuer S., Lessard E.J., 2000, Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton, Limnol. Oceanogr., 45(3), 569-579, http://dx.doi.org/10.4319/lo.2000.45.3.0569
  • 38. Nausch G., Nehring D., Nagel K., 2008, Nutrient concentrations, trends, and their relation to eutrophication, [in:] State and evolution of the Baltic Sea, 1952-2005, R. Feistel, G. Nausch & N. Wasmund (eds.), John Wiley & Sons, Inc., Hoboken, New Jersey, 337-366.
  • 39. Ochocki S., Nakonieczny J., Chmielowski H., Zalewski M., 1995, The hydrochemical and biological impact of the river Vistula on the pelagic system of the Gulf of Gdańsk in 1994. Part 2. Primary production and chlorophyll a, Oceanologia, 37(2), 207-226.
  • 40. Packard T.T., Williams P.J., 1981, Rates of respiratory oxygen consumption and electron transport in surface seawater from the northeast Atlantic, Oceanol. Acta, 4, 351-358.
  • 41. Pastuszak M., Witek Z., Nagel K., Wielgat M., Grelowski A., 2005, Role of the Oder estuary (southern Baltic) in transformation of the riverine nutrient loads, J. Marine Syst., 57(1-2), 30-54, http://dx.doi.org/10.1016/j.jmarsys.2005.04.005
  • 42. Pernthaler A., Pernthaler J., Amann R., 2002, Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria, Appl. Environ. Microbiol., 68, 3094-3101, http://dx.doi.org/10.1128/AEM.68.6.3094-3101.2002
  • 43. Piwosz K., Salcher M.M., Zeder M., Ameryk A., Pernthaler J., 2013, Seasonal dynamics and activity of typical freshwater bacteria in brackish waters of the Gulf of Gdańsk, Limnol. Oceanogr., 58(3), 817-826.
  • 44. Renk H., 2000, Primary production of the southern Baltic, Stud. Mater. MIR Ser. A, 35, 78 pp., (in Polish).
  • 45. Renk H., Ochocki S., Kurzyk S., 2000, In situ and simulated in situ primary production in the Gulf of Gdańsk, Oceanologia, 42(2), 263-282.
  • 46. Riemann B., Bjornsen P.K., Newell S., Fallon R., 1987, Calculation of cell production of coastal bacteria based on measured incorpora tion of 3H-thymidine, Limnol. Oceanogr., 32(2), 471-476, http://dx.doi.org/10.4319/lo.1987.32.2.0471
  • 47. Sekar R., Pernthaler A., Pernthaler J., Warnecke F., Posch T., Amann R., 2003, An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization , Appl. Environ. Microbiol., 69(5), 2928-2935, http://dx.doi.org/10.1128/AEM.69.5.2928-2935.2003
  • 48. Shiah F.-K., Ducklow H.W., 1994, Temperature regulation of heterotrophic bacterioplankton abundance, production, and specific growth rate in Chesapeake Bay, Limnol. Oceanogr., 39(6), 1243-1258, http://dx.doi.org/10.4319/lo.1994.39.6.1243
  • 49. Smith E.M., 1998, Coherence of microbial respiration rate and cell-specific bacterial activity in a coastal planktonic community, Aquat. Microb. Ecol., 16, 27-35, http://dx.doi.org/10.3354/ame016027
  • 50. Smith E.M., Kemp W.M., 2003, Planktonic and bacterial respiration along an estuarine gradient: responses to carbon and nutrient enrichment, Aquat. Microb. Ecol., 30, 251-261, http://dx.doi.org/10.3354/ame030251
  • 51. Steemann-Nielsen E., 1952, The use of radiocarbon 14C for measuring organic production in the sea, J. Cons. Int. Explor. Mer., 18, 117-140.
  • 52. Troussellier M., Schäafer H., Batailler N., Bernard L., Courties C., Lebaron P., Muyzer G., Servais P., Vives-Rego J., 2002, Bacterial activity and genetic richness along an estuarine gradient (Rhone River plume, France), Aquat. Microb. Ecol., 28(1), 13-24, http://dx.doi.org/10.3354/ame028013
  • 53. UNESCO, 1983, Chemical methods for use in marine environmental monitoring, Manual and guides, IOC 12, 53 pp.
  • 54. Vaqué D., Casamayor E.O., Gasol J.M., 2001, Dynamics of whole community bacterial production and grazing losses in seawater incuba tions as related to the changes in the proportions of bacteria with different DNA content, Aquat. Microb. Ecol., 25(2), 163-177, http://dx.doi.org/10.3354/ame025163
  • 55. Wallner G., Amann R., Beisker W., 1993, Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms, Cytometry, 14(2), 136-143, http://dx.doi.org/10.1002/cyto.990140205
  • 56. Wasmund N., Andrushaitis A., Łysiak-Pastuszak E., Muller-Karulis B., Nausch G., Neumann T., Ojaveer H., Olenina I., Postel L., Witek Z., 2001, Trophic status of the South-Eastern Baltic Sea: a comparison of coastal and open areas, Estuar. Coast Shelf Sci., 53(6), 849-864, http://dx.doi.org/10.1006/ecss.2001.0828
  • 57. Wasmund N., Siegel H., 2008, Phytoplankton, [in:] State and evolution of the Baltic Sea, 1952-2005, R. Feistel, G. Nausch & N. Wasmund (eds.), John Wiley & Sons, Inc., Hoboken, New Jersey, 441-481.
  • 58. Wasmund N., Zalewski M., Busch S., 1999, Phytoplankton in large river plumes in the Baltic Sea, ICES J. Mar. Sci., 56(Suppl.), 23-32.
  • 59. Witek Z., Bralewska J., Chmielowski H., Drgas A., Gostkowska J., Kokacz M., Knurowski J., Krajewska-Sołtys A., Lorenz Z., Maciejewska K., Mackiewicz T., Nakonieczny J., Ochocki S., Warzocha J., Piechura J., Renk H., Stopiński M., Witek B., 1993, Structure and function of marine ecosystem in the Gdańsk Basin on the basis of studies performed in 1987, Stud. Mater. Oceanol., 63, 1-124.
  • 60. Witek Z., Humborg C., Savchuk O., Grelowski A., Łysiak-Pastuszak E., 2003, Nitrogen and phosphorus budgets of the Gulf of Gdańsk (Baltic Sea), Estuar. Coast Shelf Sci., 57(1-2), 239-248, http://dx.doi.org/10.1016/S0272-7714(02)00348-7
  • 61. Witek Z., Ochocki S., Maciejowska M., Pastuszak M., Nakonieczny J., Podgórska B., Kownacka J.M., Mackiewicz T., Wrzesińska-Kwiecień M., 1997, Phytoplankton primary production and its utilization by the pelagic community in the coastal zone of the Gulf of Gdańsk (southern Baltic), Mar. Ecol.-Prog. Ser., 148, 169-186, http://dx.doi.org/10.3354/meps148169
  • 62. Witek Z., Ochocki S., Nakonieczny J., Podgórska B., Drgas A., 1999, Primary production and decomposition of organic matter in the epipe lagic zone of the Gulf of Gdańsk, an estuary of the Vistula, ICES J. Mar. Sci., 56(Suppl.), 3-14.
  • 63. Zweifel U., Wikner J., Hagstrom A., 1995, Dynamics of dissolved organic carbon in a coastal ecosystem, Limnol. Oceanogr., 40(2), 299-305, http://dx.doi.org/10.4319/lo.1995.40.2.0299
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9714286f-9281-4660-91f3-693a89890b48
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.