PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Perspektywiczne metody obniżenia uciążliwości ruchu lotniczego w rejonie lotniska komunikacyjnego

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Future methods of reducing negative impact of air traffic in the vicinity of an airport
Języki publikacji
PL
Abstrakty
PL
Wśród najważniejszych problemów stojących współcześnie przed transportem lotniczym wyróżnić można niekorzystne oddziaływanie samolotów i lotnisk na środowisko naturalne. Jedną z możliwości poprawy tej sytuacji jest opracowywanie nowatorskich rozwiązań zmierzających do obniżenia emisyjności samolotów w fazie startu i lądowania. Nowe technologie startu i lądowania samolotu ukierunkowane są głównie na: zmniejszenie zużycia paliwa, zmniejszenie emisji hałasu oraz ograniczenie powierzchni zajmowanych przez lotniska. Jedną z najbardziej obiecujących koncepcji jest wykorzystanie systemu naziemnego do wspomagania rozpędzania i hamowania samolotu w trakcie startu i lądowania.
EN
Among the most important problems faced by the air transport today there can be mentioned some negative influences of aircraft and airports on the environment. One of the possibilities to improve the situation is to work out innovative solutions aimed at decreasing of the aircraft pollution and improving the transport effectiveness. There are several technologies that could be applied to reduce the harmful influence of the air transport on the environment. Novel ideas include for example the operation of the aircraft without the conventional undercarriage system and using the ground based power and supporting systems for the take-offs and landings. One of the major concepts is using magnetic levitation (MAGLEV) technology to support aircraft take-off and landing. This technology is well known and has been used for many years in the design of trains which travel at very high speeds. It is considered to be safe and ecologically friendly. However, using it to accelerate and decelerate an aircraft requires additional theoretical and experimental research which should give an answer whether this system can be implemented, is safe and economically reasonable.
Rocznik
Tom
Strony
48--52
Opis fizyczny
Bibliogr. 26 poz., il.
Twórcy
autor
  • Katedra Samolotów i Silników Lotniczych Politechnika Poznańska
Bibliografia
  • [1] Adamo F., Majka A. Airport and fly-over noise of the GABRIEL Concept. Deliverable D5.1, Integrated Ground and on-Board system for Support of the Aircraft Safe Take-off and Landing - GABRIEL, EU project number 284884, Budapest, 2013.
  • [2] AIRBUS. A320 Airplane Characteristics for Airport Planning. AIRBUS SAS., Customer Services, Technical Data Support and Services, 31707 Blagnac Cedex, FRANGE, 1985.
  • [3] Albanese A., Schmollgruber P., Rohacs D., Kocsis A., Sibilski K. Effects of GABRIEL Concept on the air Transportation Sustainability. Deliverable D5.3, Integrated Ground and on-Board system for Support of the Aircraft Safe Take-off and Landing - GABRIEL, EU project number 284884, Budapest, 2014.
  • [4] Brusow W., Klepacki Z., Majka A. Air-ports and Facilities Data Base, EPATS technical report, Project no: ASA-6-GT-2006-044549, 2007.
  • [5] Federal Aviation Administration (FAA). SAGE System for assessing Aviation's Global Emissions. Technical Manual, 1st ed., Washington, DG, September 2005.
  • [6] European Aviation Safety Agency. Certification Specifications for Large Aeroplanes GS-25, Decision No 2012/008/R of the Executive Director of the European Aviation Safety Agency, 6 July 2012.
  • [7] EUROGONTROL. A Place to Stand: Airports in the European Air Network. EUROGONTROL Trends in Air Traffic, Volume 3, 2006.
  • [8] EUROCONTROL Flight Movements 2011 - 2017. Medium-Term Forecast. European Organisation for the Safety of Air Navigation, Brussels, Belgium, 2011.
  • [9] Filippone A. Flight Performance of Fixed and Rotary Wing Aircraft. ELSEVIER. Great Britain, 2006.
  • [10] Gudmundsson S. General Aviation Aircraft Design: Applied Methods and Procedures. Elsevier, Oxford, October 2013.
  • [11] International Civil Aviation Organization (IGAO). International Standards and Recommended Practices. Environmental Protection. Annex 16, 1993.
  • [12] International Civil Aviation Organization (IGAO). Engine exhaust emissions data-bank. First edition. Doc 9646-AN/943, 1995.
  • [13] IPCG: IPGG Revised 1996 Guidelines for National Greenhouse Gas lnventories, Volume 3, Greenhouse Gas lnventory Reference Manual, IPGC WGI Technical Support Unit, Hadley Centre, Meteorological Office, Bracknell, UK, 1997.
  • [14] Majka, A., Klepacki, Z., Orkisz, M., Pawluczy-Majka, J., Schmollgruber, P., Sibilski, K., Felisiak, R, Wróbel, M.. Aircraft weight bre-akdown and energy balance calculation. Deliverable D 2.2., GABRIEL, EU project number 284884, Rzeszów, 2011.
  • [15] Majka, A., Klepacki, Z., Orkisz, M., Pawluczy-Majka, J., Wygonik, P., Sibilski, K., Felisiak, P., Wróbel, M., Rohacs, D., Rohacs, J. Effect of maglev on aircraft characteristics (geometrics, weight, aerodynamics, flight performance). Deliverable D 2.11., GABRIEL, EU project number 284884, Rzeszów, 2013.
  • [16] Raymer D. P. Aircraft Design: A Conceptual Approach. AIAA Education Series. Washington, D.C., 1992.
  • [17] Rohacs J,, Rohacs D., Jankovics l. Possible Solutions to Take-Off and Land an Aircraft. Deliverable D2.4. Integrated Ground and on-Board system for Support of the Aircraft Safe Take-off and Landing - GABRIEL EU project number 284884. Budapest, 2012.
  • [18] Rohacs J., Rohacs D., Schmollgruber P., Voskuijl M. GABRIEL operational concept. Deliverable D2.9, Integrated Ground and on-Board system for Support of the Aircraft Safe Take-off and Landing - GABRIEL, EU project number 284884, Budapest, 2012.
  • [19] Roskam J. Airplane Design, Part l: Preliminary Sizing of Airplane. Kansas, 1990.
  • [20] Roskam J. Airplane Design. Part V: Component Weight Estimation. Roskam Aviation and Engineering Corporation. Kansas, 1985.
  • [21] Sibilski K., Szczepanski G., Żyluk A., Voskuijl M., Vos R., Schoustra R.J., Rohacs J., Majka A. Take-off and Landing Performance of the Aircraft Using the GABRIEL Concept. Deliverable D3.8, Integrated Ground and on -Board system for Support of the Aircraft Safe Take-off and Landing - GABRIEL, EU project number 284884, Budapest, 2013.
  • [22] Sibilski K., Majka A. Emission and green-house effects related to the GABRIEL concept, Deliverable D5.2, Integrated Ground and on-Board system for Support of the Aircraft Safe Take-off and Landing - GABRIEL, EU project number 284884, Budapest, 2014.
  • [23] Svensson F., Hasselort A., Moldanova J. Reduced Environmental Impact by Lowered Cruise Altitude for Liquid Hydrogen-Fuelled Aircraft. Aerospace Science and Technology, No. 8, pp. 307-320, 2004.
  • [24] Torenbeek E. Synthesis of Subsonic Airplane Design. Delft University Press. Rotterdam, 1976.
  • [25] www.sesarju.eu, 2014.
  • [26] www.cleansky.eu/content/homepage/about-clean-sky-2, 2014.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-9712b9e5-08de-47c0-85df-e66cf4aec23a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.