PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Intrastratal flow in the Cretaceous Gyeokpori Formation (SW South Korea)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Intrastratal flow is a process that is still poorly understood, rarely described and difficult to interpret in ancient rocks. Sediments in the Cretaceous lacustrine Gyeokpori Formation of southwestern South Korea contain some chaotically deformed sandstone layers with deformed mudstone clasts that are ascribed to this process. The interpretation is based on the fact that these layers cannot be explained as a result of subaqueous debris flows or mass transport, whereas the sedimentary context, including the presence of other soft-sediment deformation structures, indicates that intrastratal flow must have been physically possible. The sedimentary setting was a lake in which mainly siliciclastic rocks were deposited, with some interbedded volcaniclastics. The nearby volcanic activity caused seismic shocks that affected the unstable lake margins resulting in the dominance of gravity-flow deposits, but also in a high sedimentation rate that facilitated soft-sediment deformation partly caused by intrastratal flow. This must have happened fairly frequently during a probably limited time-span, as several layers showing traces of intrastratal flow are present within a succession of only <1 m thick. The combined data on the geological setting and our findings regarding the origin of the various soft-sediment deformation structures may help to recognize the traces left by intrastratal flow elsewhere in the geological record.
Rocznik
Strony
611--625
Opis fizyczny
Bibliogr. 40 poz., fot., rys.
Twórcy
autor
  • Korea Institute of Geoscience and Mineral Resources (KIGAM), Geology Division, Daejeon 34132, South Korea
  • Shandong University of Science and Technology, College of Earth Science and Engineering, Qingdao 266590, Shandong, China
autor
  • Kongju National University, Department of Geoenvironmental Sciences, Kongju 314-701, South Korea
autor
  • Korea Institute of Geoscience and Mineral Resources (KIGAM), Geology Division, Daejeon 34132, South Korea
Bibliografia
  • 1. Alfaro, P., Moretti, M., Soria, J.M., 1997. Soft-sediment deformation structures induced by earthquakes (seismites) in Pliocene lacustrine deposits (Guadix-Baza Basin, central Betic Cordillera). Eclogae Geologicae Helvetiae, 90: 531-540.
  • 2. Alsop, G.I., Marco, S., 2013. Seismogenic slump folds formed by gravity-driven tectonics down a negligible subaqueous slope. Tectonophysics, 605: 48-69.
  • 3. Auchter, N.C., Romans, B.W., Hubbard, S.M., 2016. Influence of deposit architecture on intrastratal deformation, slope deposits of the Tres Pasos Formation, Chile. Sedimentary Geology, 341: 13-26.
  • 4. Byun, U.H., Van Loon, Kwon, Y.K., Ko, K., 2019. A new type of slumping-induced soft-sediment deformation structure: the envelope structure. Geologos, 25: 111-124.
  • 5. Chough, S.K., 2013. Geology and Sedimentology of the Korean Peninsula. Elsevier, Amsterdam.
  • 6. Chough, S.K., Chun, S.S., 1988. Intrastratal rip-down clasts, Late Cretaceous Uhangri Formation, southwest Korea. Journal of Sedimentary Petrology, 58: 530-533.
  • 7. Chough, S.K., Sohn, Y.K., 2010. Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean Peninsula: new view. Earth-Science Reviews, 101: 225-249.
  • 8. Chun, S.S., Chough, S.K., 1992. Depositional sequences from high-concentration turbidity currents, Cretaceous Uhangri Formation (SW Korea). Sedimentary Geology, 77: 225-233.
  • 9. Curran, J.C., 2007. The decrease in shear stress and increase in transport rates subsequent to an increase in sand supply to a gravel-bed channel. Sedimentary Geology, 202: 572-580.
  • 10. Debacker, T.N., Dumon, M., Matthys, A., 2009. Interpreting fold and fault geometries from within the lateral to oblique parts of slumps: a case study from the Anglo-Brabant Deformation Belt (Belgium). Journal of Structural Geology, 31: 1525-1539.
  • 11. Frey, S.E., Dashtgard, S.E., 2012. Seaweed-assisted, benthic gravel transport by tidal currents. Sedimentary Geology, 265-266: 121-125.
  • 12. Gibert, L., Sanz de Galdeano, C., Alfaro, P., Scott, P.G., Lopez Garrido, A.C., 2005. Seismic induced slump in Early Pleistocene deltaic deposits of the Baza Basin (SE Spain). Sedimentary Geology, 179: 279-294.
  • 13. Gibert, L., Alfaro, P., García-Tortosa, F.J., Scott, G., 2011. Superposed deformed beds produced by single earthquakes (Tecopa Basin, California): Insights into paleoseismology. Sedimentary Geology, 235: 148-159.
  • 14. Gladkov, A.S., Lobova, E.U., Deev, E.V., Korzhenkov, A.M., Mazeika, J.V., Abdieva, S.V., Rogozhin, E.A., Rodkin, M.V., Fortuna, A.B., Charimov, T.A., Yudakhin, A.S., 2016. Earthquake-induced soft-sediment deformation structures in Late Pleistocene lacustrine deposits of Issyk-Kul lake (Kyrgystan). Sedimentary Geology, 344: 112-122.
  • 15. Hansen, E., 1971. Strain Facies. Springer, Berlin.
  • 16. Haughton, P.D.W., Barker, S.P., McCaffrey, W.D., 2003. “Linked” debrites in sand-rich turbidite systems; origin and signifcance. Sedimentology, 50: 459-482.
  • 17. Hempton, M.R., Dewey, J.F., 1983. Earthquake-induced deformational structures in young lacustrine sediments, East Anatolian Fault, southeast Turkey. Tectonophysics, 98: T7-T14.
  • 18. Jiang, J., Zhong, N., Li, Y., Xu, H., Yang, H., Peng, X., 2016. Soft sediment deformation structures in the Lixian lacustrine sediments, eastern Tibetan Plateau and implications for postglacial seismic activity. Sedimentary Geology, 344: 123-134.
  • 19. Kawakami, G., Kawamura, M., 2002. Sediment flow and deformation (SFD) layers: evidence for intrastratal flow in laminated muddy sediments of the Triassic Osawa Formation, Northeast Japan. Journal of Sedimentary Petrology, 72: 171-181.
  • 20. Kim, S.B., Chough, S.K., Chun, S.S., 1995. Bouldery deposits in the lowermost part of the Cretaceous Kyokpori Formation, SW Korea: cohesionless debris flows and debris falls on a steep-gradient delta slope. Sedimentary Geology, 98: 97-119.
  • 21. Kim, S.B., Chough, S.K., Chun, S.S., 2003. Tectonic controls on spatio-temporal development of depositional systems and generation of fining-upward basin fills in a strike-slip setting: Kyokpori Formation (Cretaceous), south-west Korea. Sedimentology, 50: 639-665.
  • 22. Ko, K., Park, S., Kwon, C.W., 2015. Soft-sediment deformation structures in the Cretaceous Gyeokpori Formation of the Buan area, Korea: Structural characteristics, reconstruction of paleoslope and triggering mechanism of slump (in Korean with English abstract). Journal of Geological Society of Korea, 51: 545-560.
  • 23. Ko, K., Kim, S.W., Lee, H.-J., Hwang, I.G., Kim, B.C., Kee, W.-S., Kim, Y.-S., Gihm, Y.S., 2017. Soft sediment deformation structures in a lacustrine sedimentary succession induced by volcano-tectonic activities: an example from the Cretaceous Beolgeumri Formation, Wido Volcanics, Korea. Sedimentary Geology, 358: 197-209.
  • 24. Koh, H.J., Kwon, C.W., Park, S.I., Park, J., Kee, W.S., 2013. Geological Report of the Julpo and Wido-Hawangdeungdo sheets (1:50,000) (in Korean, with English abstract). Korea Institute of Geoscience and Mineral Resources.
  • 25. Kwon, C.W., Ko, K., Gihm, Y.S., Koh, H.J., Kim, Y., 2017. Late Cretaceous volcanic arc system in southwest Korea: Distribution, lithology, age, and tectonic implications. Cretaceous Research, 75: 125-140.
  • 26. Mazumder, R., Van Loon, A.J., Malviya, P., Arima, M., Ogawa, Y., 2016. Soft-sediment deformation structures in the Mio-Pliocene Misaki Formation within alternating deep-sea clays and volcanic ashes (Miura Peninsula, Japan). Sedimentary Geology, 344: 323-335.
  • 27. Moretti, M., Sabato, L., 2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the Sant'Arcangelo Basin (southern Italy): seismic shock vs. overloading. Sedimentary Geology, 196: 31-45.
  • 28. Pisarska-Jamroży, M., Van Loon, A.J., Mleczak, M., Roman, M., 2019. Enigmatic gravity-flow deposits at Ujście (western Poland), triggered by earthquakes (as evidenced by seismites) caused by Saalian glacioisostatic crustal rebound. Geomorphology, 326: 239-251.
  • 29. Rana, R., Sati, S.P., Sundrival, Y., Juval, N., 2016. Genesis and implication of soft-sediment deformation structures in high-energy fluvial deposits of the Alaknanda Valley, Garhwal Himalaya, India. Sedimentary Geology, 344: 263-276.
  • 30. Rodríguez-Pascua, M.A., Calvo, J.P., de Vicente, G., Gomez Gras, D., 2000. Seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their use as indicators of earthquake magnitudes during the Late Miocene. Sedimentary Geology, 135: 117-135.
  • 31. Salamon, T., 2015. Sedimentary record of a Scandinavian Ice Sheet drainage system and till deposition over subglacial obstacles promoting basal sliding (an example from southern Poland). Sedimentary Geology, 330: 108-121.
  • 32. Sims, J.D., 1973. Earthquake-induced structures in sediments of Van Norman Lake, San Fernando, California. Science, 182: 161-163.
  • 33. Sims, J.D., 1975. Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics, 29: 141-152.
  • 34. Tanner, L.H., Lucas, S.G., 2007. The Moenave Formation: Sedimentologic and stratigraphic context of the Triassic-Jurassic boundary in the Four Corners area, southwestern USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 244: 111-125.
  • 35. Taşgín, C.K., Türkmen, I., 2009. Analysis of soft-sediment deformation structures in Neogene fluvio-lacustrine deposits of Çaybğai Formation. Eastern Turkey. Sedimentary Geology, 218: 16-30.
  • 36. Taşgín, C.K., Orhan, H., Türkmen, I., Aksoy, E., 2011. Soft-sediment deformation structures in the late Miocene Şelmo Formation around Adiyaman area, Southeastern Turkey. Sedimentary Geology, 235: 277-291.
  • 37. Van Loon, A.J., Pisarska-Jamroży, M., Nartišs, M., Krievâns, M., Soms, J., 2016. Seismites resulting from high-frequency, high-magnitude earthquakes in Latvia caused by Late Glacial glacio-isostatic uplift. Journal of Palaeogeography, 5: 363-380.
  • 38. Whitmore, J.H., Strom, R., 2010. Sand injectites at the base of the Coconino Sandstone, Grand Canyon, Arizona (USA). Sedimentary Geology, 230: 46-59.
  • 39. Williams, E., 1960. Intra-stratal flow and convolute folding. Geological Magazine, 97: 208-214.
  • 40. Woodcock, N.H., 1979. The use of slump structures as palaeoslope orientation estimators. Sedimentology, 26: 83-99.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-970d1cce-9e9b-4134-9f15-227681b9fb55
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.