PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

An Evaluation of the Effect of Silica Dust on Brake Pad Wear

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Ocena wpływu zapylenia pyłem kwarcowym na zużycie klocków hamulcowych
Języki publikacji
EN
Abstrakty
EN
The wear of brake pads exposed to silica dust was measured. A novel test stand was developed to analyse brake pads' wear exposed to silica dust. Brake pad wear was determined by measuring pad lining geometry and mass changes. Geometric wear was analysed by determining changes in the thickness of the brake pad lining during friction tests. In order to determine changes in mass, the brake pads were weighed before and after the test. Brake pad wear was evaluated under dust-free conditions and under exposure to silica dust. The tests revealed significant differences in brake pad wear under dust-free conditions and under exposure to silica dust. Mass loss of brake pad lining at different silica concentrations in airborne dust was described.
PL
W pracy przedstawiono wyniki pomiarów zużycia okładzin hamulców tarczowych w zapyleniu pyłu kwarcowego. W celu przeprowadzenia badań zbudowano nowatorskie stanowisko do badania zużycia okładzin hamulców tarczowych w zapyleniu pyłu kwarcowego. Zużycie określono metodą geometryczną i wagową. Pomiary w przypadku wyznaczenia zużycia geometrycznego polegały na ocenie zmian grubości okładziny hamulcowej podczas prób tarcia. W przypadku metody wagowej dokonano pomiaru masy klocka hamulcowego przed badaniem oraz po wykonaniu badania. Badania zużycia klocków hamulcowych dokonano w warunkach środowiska bez zapylenia oraz w zapyleniu pyłem kwarcowym. Przeprowadzone wyniki badań wykazały istotne różnice w procesie zużywania klocków hamulcowych pomiędzy próbami wykonywanymi bez zapylenia, a tymi wykonywanymi w zapyleniu. Przedstawiono przebieg ubytku masowego w zależności od stopnia zapylenia powietrza kwarcem.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
73--84
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr., wz.
Twórcy
  • The University of Warmia and Mazury in Olsztyn, Department of Vehicle and Machine Design and Operation, M. Oczapowskiego 11 Street, 10-719 Olsztyn, Poland
  • The University of Warmia and Mazury in Olsztyn, Department of Vehicle and Machine Design and Operation, M. Oczapowskiego 11 Street, 10-719 Olsztyn, Poland
  • The University of Warmia and Mazury in Olsztyn, M. Oczapowskiego 11 Street, 10-719 Olsztyn, Poland
Bibliografia
  • 1. Pinca-Bretotean C., Josana A., Birtok-Băneasă C.: Laboratory testing of brake pads made of organic materials intended for small and medium vehicles, IOP Conf. Series: Materials Science and Engineering, 2018, 393, 012029, pp. 1–7.
  • 2. Elzayady, N, Elsoeudy, R. 2021. Microstructure and wear mechanisms investigation on the brake pad. Journal of Materials Search and Technology, 2021, 11, pp. 2314–2335.
  • 3. Marcol D., Stanik Z.: Ocena zużycia awaryjnego pary ciernej klocek–tarcza hamulcowa na podstawie ilościowej i jakościowej analizy metalograficznej oraz badań topografii powierzchni 2d, Autobusy, 2017, 12, pp. 1122–112.
  • 4. Kuliś E., Żółtowski B.: Badania układów hamulcowych, Studies & Proceedings of Polish Association for Knowledge Management, 2011, Nr 47, pp. 126–140.
  • 5. Świderski A., Borucka A., Jacyna-Gołda I., Szczepański E.: Wear of brake system components in various operating conditions of vehicle in the transport company, Maintenance and Reliability, 2019, 21 (1), pp. 1–9.
  • 6. Grigoratos T., Martini G.: Brake wear particle emissions, Environmental Science and Pollution Research, 2015, 22, pp. 2491–2504.
  • 7. Dziubak T.: Operating fluids contaminantions and their effect on the wear of elements of a motor vehicle’s combustion engine, The Archives of automotive Engineering, 2016, 72(2), pp. 43–72.
  • 8. Ligier K., Napiórkowski J., Lemecha M.: Effect of Abrasive Soil Mass Grain Size on the Steel Wear Process, Tribology in Industry, 2020, 42(2), pp. 165–176.
  • 9. Grigoratos T., Martini G.: Brake wear particle emissions: a review, Environ Sci Pollut Res, 2015, 22, pp. 2491–2504. DOI 10.1007/s11356-014-3696-8.
  • 10. Ma Y., Martynková G.S., Valášková M., Matějka V., Lu Y.: Effects of ZrSiO4 in non-metallic brake friction materials on friction performance, Tribology International, 2008, 41 (3), pp. 166–174.
  • 11. Banait A.S., Raibhole V.N.: Study on tribological investigations of alternative automotive brake pad materials. In 8th National Conference on Recent Developments in Mechanical Engineering, pp. 40–43.
  • 12. Jadhav S.P., Sawant S.H.: A review paper: Development of novel friction material for vehicle brake pad application to minimize environmental and health issues, Materials Today: Proceedings, 2019, 19, pp. 209–212.
  • 13. Valotto G., Zannoni D., Rampazzo G., Visin F., Formenton G., Gasparello A.: Characterization and preliminary risk assessment of road dust collected in Venice airport (Italy), Journal of Geochemical Exploration, 2018, 190, pp. 142–153.
  • 14. Primaningtyas W.E., Sakura R.R., Syafi’i I., Adhyaksa A.A.G.A.D.: Asbestos-free brake pad using composite polymer strengthened with rice husk powder, In IOP Conference Series: Materials Science and Engineering, 2019, Vol. 462, No. 1, p. 012015, IOP Publishing, 1–6.
  • 15. Pujari S., Srikiran S.: Experimental investigations on wear properties of palm kernel reinforced composites for brake pad applications, Defence Technology, 2019, 15(3), pp. 295–299.
  • 16. Asotah W., Adeleke A.: Development of asbestos free brake pads using corn husks, Leonardo Electronic Journal of Practices and Technologies, 2017, 31, pp. 129–144.
  • 17. Singaravelu D.L., Vijay R., Manoharan S., Kchaou M.: Development and performance evaluation of eco-friendly crab shell powder based brake pads for automotive applications, International Journal of Automotive and Mechanical Engineering, 2019, 16(2), pp. 6502–6523.
  • 18. Alemani M., Wahlström J., Olofsson U.: On the influence of car brake system parameters on particulate matter emissions, Wear, 2018, 396, pp. 67–74.
  • 19. Nosko O., Olofsson U.: Quantification of ultrafine airborne particulate matter generated by the wear of car brake materials, Wear, 2017, 374, pp. 92–96.
  • 20. Zum Hagen F.H.F., Mathissen M., Grabiec T., Hennicke T., Rettig M., Grochowicz J., Benter T.: Onroad vehicle measurements of brake wear particle emissions, Atmospheric Environment, 2019, 217, p. 116943.
  • 21. Bonfanti A.: Low-impact friction materials for brake pads (Doctoral dissertation, University of Trento), 2016.
  • 22. Zhang S., Hao Q., Liu Y., Jin L., Ma F., Sha Z., Yang D.: Simulation study on friction and wear law of brake pad in high-power disc brake, Mathematical Problems in Engineering 2019.
  • 23. Gawande S.H., Raibhole V.N., Banait A.S.: Study on tribological investigations of alternative automotive brake pad materials, Journal of Bio-and Tribo-Corrosion, 2020, 6(3), pp. 1–10.
  • 24. Ahmad F., Lo, S.J., Aslam M., Haziq A.: Tribology behaviour of alumina particles reinforced aluminium matrix composites and brake disc materials, Procedia engineering, 2013, 68, pp. 674–680.
  • 25. Wahlström J., Söderberg A., Olander L., Jansson A., Olofsson U.: A pin-on-disc simulation of airborne wear particles from disc brakes, Wear, 2010, 268(5–6), pp. 763–769.
  • 26. Kukutschová J., Roubíček V., Mašláň M., Jančík D., Slovák V., Malachová K., Filip P.: Wear performance and wear debris of semi-metallic automotive brake materials, Wear, 2010, 268(1–2), pp. 86–93.
  • 27. Balakrishnan E., Meganathan S., Balachander M., Ponshanmugakumar A.: Elemental analysis of brake pad using natural fibres, Materials Today: Proceedings, 2019, 16, pp. 1067–1074.
  • 28. Barros L.Y., Poletto J.C., Neis P.D., Ferreira N.F., Pereira C.H.: Influence of copper on automotive brake performance, Wear, 2019, 426, pp. 741–749.
  • 29. Lagel M.C., Hai L., Pizzi A., Basso M.C., Delmotte L., Abdalla S., Al-Marzouki F.M.: Automotive brake pads made with a bioresin matrix, Industrial Crops and Products, 2016, 85, pp. 372–381.
  • 30. Li G., Yan Q., Jianren X., Qi, G, Yang, X.: The stability of the coefficient of friction and wear behavior of C/C–SiC, Tribology Letters, 2015, 58(1), pp. 1–7.
  • 31. Xiao X., Yin Y., Bao J., Lu L., Feng X.: Review on the friction and wear of brake materials, Advances in Mechanical Engineering, 2016, 8(5), 1687814016647300.
  • 32. Hagino H., Oyama M., Sasaki S.: Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles, Atmospheric Environment, 2016, 131, pp. 269–278.
  • 33. Riediker M., Gasser M., Perrenoud A., Gehr P., Rothen-Rutishauser B.: A system to test the toxicity of brake wear particles, Am J Respir Crit Care Med, 2008, 177(1), pp. 1–23.
  • 34. Neis P.D., Ferreira N.F., Sukumaran J., De Baets P., Ando M., Matozo LT., Masotti D.: Characterization of surface morphology and its correlation with friction performance of brake pads, Sustainable construction & design, 2015, 6(1).
  • 35. Ozcan S., Filip P.: Wear of carbon fiber reinforced carbon matrix composites: Study of abrasive., oxidative wear and influence of humidity, Carbon, 2013, 62, pp. 240–247.
  • 36. Blau P.J., McLaughlin J.C.: Effects of water films and sliding speed on the frictional behavior of truck disc brake materials, Tribology international, 2003, 36(10), pp. 709–715.
  • 37. Synák F., Jakubovičová L., Klačko M.: Impact of the choice of available brake discs and brake pads at different prices on selected vehicle features, Appl. Sci., 2022, 12 7325, pp. 0–32, https://doi.org/10.3390/app12147325.
  • 38. https://www.auto-swiat.pl/wiadomosci/aktualnosci/nowa-norma-emisji-spalin-euro-7-czyli-wojna-oprzepisy-i-przyszlosc-samochodow/c4cdq91
  • 39. Makland. 2015. Materiał JT6500 i test zużyciowy materiał cierny: JT6500.
  • 40. Viderščak D., Schauperl Z., Ormuž K., Šolić S., Nikšić M., Milčić D., Ormuž P.: Influence of brake pad propertiesto braking characteristics, Promet–Traffic&Transportation, 2022, Vol. 34, No. 1, pp. 91–102, DOI: https://doi.org/10.7307/ptt.v34i1.3846.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-97013dc4-9baa-4ce0-838f-75dc573d1ea6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.