Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study investigates the effects of temperature and residence time on the energy density of kesambi leaves through experimental torrefaction, proximate analysis, and response surface methodology with a central composite design (RSM-CCD). The torrefaction process enhances the energy density of kesambi leaves by increasing fixed carbon content while reducing volatile matter. The RSM-CCD models developed in this research are both statistically significant and exhibit robust predictive accuracy for estimating higher heating value (HHV), providing valuable insights into optimal torrefaction conditions. Surface plots effectively illustrate the relationships between HHV, temperature, and residence time, enabling the identification of ideal process parameters. Additionally, a desirability analysis reveals opportunities to enhance correlations between HHV and key measured properties, such as moisture content, ash, and volatile matter. This research makes a significant contribution to understanding and optimising the torrefaction process for kesambi leaves, with practical implications for improving energy density and advancing the development of sustainable biofuel sources. By offering a novel approach to predicting HHV in kesambi leaf-based biofuels, the findings highlight the potential for optimising torrefaction processes to enhance the viability of renewable energy resources. Further research is suggested to refine these predictive models and explore additional factors influencing HHV, aiming to bolster the production of sustainable biofuels.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
86--90
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Artha Wacana Christian University, Kupang, East Nusa Tenggara, Indonesia, 85111
Bibliografia
- Abdul Wahid, F.R.A., Saleh, S. and Abdul Samad, N.A.F. (2017) “Estimation of higher heating value of torrefied palm oil waste from proximate analysis,” Energy Procedia, 138, pp. 307–312. Available at: https://doi.org/10.1016/j.egypro.2017.10.102.
- Ahiduzzaman, M. and Sadrul Islam, A.K.M. (2016) “Assessment of rice husk briquette fuel use as an alternative source of woodfuel,” International Journal of Renewable Energy Research, 6(4). Available at: https://doi.org/10.20508/ijrer.v6i4.4854.g6948.
- Alhinai, M. et al. (2018) “Characterisation and thermochemical conversion of rice husk for biochar production,” International Journal of Renewable Energy Research, 3, pp. 1648–1656. Available at: https://www.ijrer.org/ijrer/index.php/ijrer/article/view/8054 (Accessed: Jun 24, 2024).
- Bhandari, A. (2020) Difference between R-squared and adjusted R-squared. Analytics Vidhya. Available at: https://www.analytics-vidhya.com/blog/2020/07/difference-between-r-squared-and-ad-justed-r-squared/ (Accessed: Jun 24, 2024).
- Dethan, J. and Lalel, H. (2024) “Optimization of particle size of torrefied kesambi leaf and binder ratio on the quality of bio-briquettes,” Journal of Sustainable Development of Energy, Water and Environment Systems, 12(1), 1120490. Available at: https://doi.org/10.13044/j.sdewes.d12.0490.
- Dethan, J.J.S. (2023) “Optimalisasi suhu dan waktu tinggal pada proses torefaksi daun kesambi (Schleichera oleosa),” Seminar Nasional Politani Kupang Ke-6 Kupang. Available at: https://ejurnal.politanikoe.ac.id/index.php/psnp/article/view/293/229 (Accessed: Jun 24, 2024).
- Dethan, J.J.S. et al. (2024) “Characteristics of kesambi leaf torrefaction biomass,” AIP Conference Proceedings, 3073, 050016. Available at: https://doi.org/10.1063/5.0193717.
- Dimyati, T.T. and Kurniasih, D. (2020) “Financial analysis of establishing micro industry of corn cobs briquettes in Majalengka Regency,” International Journal of Renewable Energy Research, 10(1). Available at: https://doi.org/10.20508/ijrer.v10i1.10382.g7856.
- Dong, C., Li, G. and Feng, X. (2019) “Lack-of-fit tests for quantile regression models,” Journal of the Royal Statistical Society. Series B: Statistical Methodology, 81(3), pp. 629–648. Available at: https://doi.org/10.1111/rssb.12321.
- Etemadi, S. and Khashei, M. (2021) “Etemadi multiple linear regression,” Measurement Journal of the International Measurement Confederation, 186, 110080. Available at: https://doi.org/10.1016/j.measurement.2021.110080.
- Frost, J. (2019) How to interpret adjusted R-squared and predicted R-squared in regression analysis. Statistics By Jim. Available at: https://statisticsbyjim.com/regression/interpret-adjusted-r-squared-predicted-r-squared-regression/ (Accessed: Jun 25, 2024).
- García, R. et al. (2013) “Biomass proximate analysis using thermo-gravimetry,” Bioresource Technology, 139, pp. 1–4. Available at: https://doi.org/10.1016/j.biortech.2013.03.197.
- Hwangdee, P. et al. (2021) “Physical characteristics and energy content of biomass charcoal powder,” International Journal of Renewable Energy Research, 11(1). Available at: https://doi.org/10.20508/ijrer.v11i1.11658.g8122.
- Kieseler, S., Neubauer, Y. and Zobel, N. (2013) “Ultimate and proximate correlations for estimating the higher heating value of hydrothermal solids,” Energy and Fuels, 27(2), pp. 908–918. Available at: https://doi.org/10.1021/ef301752d.
- Majamo, S.L. and Amibo, T.A. (2023) “Modeling and optimization of chemical-treated torrefaction of wheat straw to improve energy density by response surface methodology,” Biomass Conversion and Biorefinery, 14, pp. 21213–21227. Available at: https://doi.org/10.1007/s13399-023-04192-y.
- Mardyaningsih, M., Leki A. and Engel, S.S. (2016) “Teknologi Pembuatan Liquid Smoke Daun Kesambi sebagai Bahan Pengasapan Se’i Ikan Olahan Khas Nusa Tenggara Timur [Liquid Smoke Making Technology from Kesambi Leaves as a Smoking Ingredient for Se'i Fish, a Typical Processing of East Nusa Tenggara],” in Prosiding Seminar Nasional Teknik Kimia “Kejuangan”, Yogyakarta, 17 Mar 2016. Yogyakarta: UPN Veteran Yogyakarta. pp. 1–6. Available at: http://jurnal.upnyk.ac.id/index.php/kejuangan/article/view/1589/1463 (Accessed: Apr 10, 2024).
- Martín-Pascual, J. et al. (2020) “Determination of the optimal operative conditions for the torrefaction of olive waste biomass,” Sustainability, 12(16), 6411. Available at: https://doi.org/10.3390/SU12166411.
- Nhuchhen, D., Basu, P. and Acharya, B. (2014) “A comprehensive review on biomass torrefaction,” International Journal of Renewable Energy, 2014, 506376. Available at: https://doi.org/10.5171/2014.506376.
- Nhuchhen, D.R. and Afzal, M.T. (2017) “HHV predicting correlations for torrefied biomass using proximate and ultimate analyses,” Bioengineering, 4(1), 7. Available at: https://doi.org/10.3390/bioengineering4010007.
- Orisaleye, J.I. et al. (2022) “Investigation of the effects of torrefaction temperature and residence time on the fuel quality of corncobs in a fixed-bed reactor,” Energies, 15(14), 5284. Available at: https://doi.org/10.3390/en15145284.
- Oyebode, W.A. and Ogunsuyi, H.O. (2021) “Impact of torrefaction process temperature on the energy content and chemical composition of stool tree (Alstonia congenisis Engl) woody biomass,” Current Research in Green and Sustainable Chemistry, 4, 100115. Available at: https://doi.org/10.1016/j.crgsc.2021.100115.
- Torres Ramos, R. et al. (2023) “Torrefaction under different re action atmospheres to improve the fuel properties of wheat straw,” Processes, 11(7), 1971. Available at: https://doi.org/10.3390/pr11071971.
- Yun, H. et al. (2021) “Identification of suitable biomass torrefaction operation envelops for auto-thermal operation,” Frontiers in Energy Research, 9. Available at: https://doi.org/10.3389/fenrg.2021.636938.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96ff2ba4-9184-4f7e-b4ee-9ba8b87964f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.