PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Real values of local resistance coefficients during water flow through a pipe aerator with filling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of studies on local resistance coefficients (ζ). The study used pipe aerators with filling made according to the Polish patent PL235924. The hydraulic investigations were performed in real working conditions of a water treatment plant in a testing rig built in the Scientific and Research Water Station of the Warsaw University of Life Sciences (SGGW). The investigation encompassed two plastic pipe aerators of an internal diameter 101.6 and 147.6 mm with steel Białecki rings of 12 and 25 mm in diameter. Measurements of pressure difference (Δp) in the investigated aerators were performed at volumetric water flows (Q) selected from the range 2-20 m3∙h-1 with the interval 2 m3∙s-1. The values of ζ were determined according to the PN-EN 1267:2012 standard. The investigation showed that the ζ depends both on an internal diameter of the plastic pipe aerator and the diameter of Białecki steel rings. The values of ζ increase with a decrease of the internal diameter of the pipe aerator and a decrease of the ring diameter.
Wydawca
Rocznik
Tom
Strony
174--182
Opis fizyczny
Bibliogr. 38 poz., fot., rys., tab., wykr.
Twórcy
  • Warsaw University of Life Sciences – SGGW, Institute of Environmental Engineering, Department of Hydraulics and Sanitary Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
  • Warsaw University of Life Science – SGGW, Institute of Civil Engineering, Department of Mechanics and Building Structures, Warsaw, Poland
  • Warsaw University of Life Sciences – SGGW, Institute of Environmental Engineering, Department of Hydraulics and Sanitary Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
autor
  • Warsaw University of Life Sciences – SGGW, Institute of Environmental Engineering, Department of Hydraulics and Sanitary Engineering, Nowoursynowska 159, 02-776 Warsaw, Poland
  • University of Science and Technology in Krakow – AGH, Faculty of Drilling, Oil and Gas, Department of Gas Engineering, Krakow, Poland
  • Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Water Supply and Sewage Systems, Białystok, Poland
  • Bialystok University of Technology, Faculty of Civil Engineering and Environmental Sciences, Department of Water Supply and Sewage Systems, Białystok, Poland
Bibliografia
  • Athulya, A.S. and Miji Cherian, R. (2016) “CFD modelling of multiphase flow through T junction,” Procedia Technology, 24, pp. 325–331. Available at: https://doi.org/10.1016/j.protcy.2016.05.043.
  • Bassett, M.D., Winterbone, D.E. and Pearson, R.J. (2001) “Calculation of steady flow pressure loss coefficients for pipe junctions,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 215(8), pp. 861–881.
  • Chalet, D. and Chesse, P. (2010) “Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems,” Journal of Thermal Science, 19(5), pp. 410–418.
  • Chowdhury, R.R., Alam, M.M. and Sadrul Islam, A.K.M. (2016) “Numerical modeling of turbulent flow through bend pipes,” Mechanical Engineering Research Journal, 10, pp. 14–19.
  • Costa, N.P. et al. (2006) “Edge effects on the flow characteristics in a 90 deg Tee junction,” Journal Fluids Engineering, 128, pp. 1204–1217. Available at: https://doi.org/10.1115/1.2354524.
  • Csizmadia, P. and Hős, C. (2014) “CFD-based estimation and experiments on the loss coefficient for Bingham and power-law fluids through diffusers and elbows,” Computers and Fluids, 99, pp. 116–123. Available at: https://doi.org/10.1016/j.compfluid.2014.04.004.
  • Dutta, P. and Nandi, N. (2015) “Effect of Reynolds number and curvature ratio on single phase turbulent flow in pipe bends,” Mechanics and Mechanical Engineering, 19(1), pp. 5–16.
  • Dutta, P. et al. (2016) “Numerical study on flow separation in 90° pipe bend under high Reynolds number by k-ε modeling,” Engineering Science Technology, an International Journal, 19, pp. 904–910. Available at: https://doi.org/10.1016/j.jestch.2015.12.005.
  • Hellstrőm, L.H., Sinha, A. and Smits, A.J. (2011) “Visualizing the very-large-scale motions in turbulent pipe flow,” Physics of Fluids, 23 (1), pp. 1–5.
  • Kalenik, M. (2015) “Empirical formulas for calculation of negative pressure difference in vacuum pipelines,” Water, 7(10), pp. 5284–5304. Available at: https://doi.org/10.3390/w7105284.
  • Kalenik, M. and Chalecki, M. (2018) “Experimental study of air lift pump delivery rate,” Rocznik Ochrona Środowiska, 20, pp. 221–240.
  • Kalenik, M., Chalecki, M. and Wichowski, P. (2020) “Real values of local resistance coefficients during water flow through welded polypropylene T-junctions,” Water, 12(3), pp. 895–910. Available at: https://doi.org/10.3390/w12030895.
  • Kalenik, M. et al. (2017) “Kinetics of water oxygenation in pipe aerator,” Infrastruktura i Ekologia Terenów Wiejskich, 2(2), pp. 689–700. Available at: http://dx.medra.org/10.14597/infraeco.2017.2.2.052.
  • Kalenik, M. and Morawski, D. (2007) “Badanie strat hydraulicznych i skuteczności napowietrzania wody w aeratorze rurowym [Investigations of hydraulic losses and effectiveness of water aeration in pipe aerator],” Gaz, Woda i Technika Sanitarna, 12, pp. 14–17.
  • Kalenik, M. and Morawski, D. (2009) “Badanie skuteczności napowietrzania wody w aeratorze rurowym [Investigations of effectiveness of water aeration in pipe aerator],” Gaz, Woda i Technika Sanitarna, 2, pp. 23–26.
  • Kalenik, M. and Morawski, D. (2013) “Eksperymentalne badania mętności i skuteczności napowietrzania wody w aeratorze rurowym wypełnionym pierścieniami Białeckiego [The experimental research on the turbidity and effectiveness of aerating water in pipe aerator with the Białecki rings],” Infrastruktura i Ekologia Terenów Wiejskich, 3(4), pp. 217–227.
  • Kalenik, M. and Morawski, D. (2020) Aerator rurowy z wypełnieniem [Pipe aerator with filling]. Urząd Patentowy Rzeczypospolitej Polskiej. Opis patentowy nr PL 235924. June 25, 2020.
  • Kalenik, M., Morawski, D. and Stańko, G. (2006) “Experimental investigation of hydraulic resistance in pipe aerators,” Electronic Journal Polish Agricultural Universities, 9(4), #55. Available at: http://www.ejpau.media.pl/volume9/issue4/art-55.html (Accessed: January 15, 2023).
  • Kuczaj, A.K., Komen, E.M.J. and Loginov, M.S. (2010) “Large-Eddy Simulation study of turbulent mixing in a T-junction,” Nuclear Engineering and Design, 240, pp. 2116–2122. Available at: https://doi.org/10.1016/j.nucengdes.2009.11.027.
  • Li, A. et al. (2014) “Study on local drag reduction effects of wedge-shaped components in elbow and T-junction close-coupled pipes,” Building Simulation, 7(2), pp. 175–184. Available at: http://dx.doi.org/10.1007/s12273-013-0113-z.
  • Li, Y., Wang, C. and Ha, M. (2015) “Experimental determination of local resistance coefficient of sudden expansion tube,” Energy and Power Engineering, 7, pp. 154–159. Available at: http://dx.doi.org/10.4236/epe.2015.74015.
  • Lin, D. et al. (2005) “Modeling multi-phase flow using CFD with related applications,” WIT Transactions on Engineering Sciences, 50, pp. 251–261.
  • Liu, M. and Duan, Y.F. (2009) “Resistance properties of coal–water slurry flowing through local piping fittings,” Experimental Thermal and Fluid Science, 33(5), pp. 828–837. Available at: https://doi.org/10.1016/j.expthermflusci.2009.02.011.
  • Malima, T.P., Kilonzo, B. and Zuwarimwe, J. (2022) “Challenges and coping strategies of potable water supply systems in rural communities of Vhembe District Municipality, South Africa,” Journal of Water and Land Development, 53, pp. 148–157. Available at: https://doi.org/10.24425/jwld.2022.140791.
  • Mynard, J.P. and Valen-Sendstad, K. (2015) “A unified method for estimating pressure losses at vascular junctions,” International Journal for Numerical Methods in Biomedical Engineering, 31, pp. 1–23. Available at: https://doi.org/10.1002/cnm.2717.
  • Ojo, O.I., Otieno, F.A. and Ochieng, G.M. (2012) “Groundwater: characteristics, qualities, pollutions and treatments: An overview,” International Journal of Water Resources and Environmental Engineering, 4(6), pp. 162–170. Available at: https://doi.org/10.5897/IJWREE12.038.
  • Oktaba, W. (1980) Elementy statystyki matematycznej i metodyka doświadczalnictwa [Elements of mathematical statistics and experimental methodology]. Warszawa: Państwowe Wydawnictwo Naukowe.
  • Ono, A. et al. (2011) “Influence of elbow curvature on flow structure at elbow outlet under high Reynolds number condition,” Nuclear Engineering and Design, 241, pp. 4409–4419. Available at: https://doi.org/10.1016/j.nucengdes.2010.09.026.
  • Pliżga, O., Kowalska, B. and Musz-Pomorska, A. (2016) “Laboratory and numerical studies of water flow through selected fittings installed at copper pipelines,” Rocznik Ochrona Środowiska, 18, pp. 873–884.
  • PN-76/M-34034 (1987) Rurociągi. Zasady obliczeń strat ciśnienia [Pipelines. Calculations of pressure losses]. Warszawa: Polski Komitet Normalizacyjny.
  • PN-EN 1267:2012 (2012) Armatura przemysłowa. Badanie oporu przepływu wodą [Industrial valves. Test of flow resistance using water as test fluid]. Warszawa: Polski Komitet Normalizacyjny.
  • Röhrig, R., Jakirlić, S. and Tropea, C. (2015) “Comparative computational study of turbulent flow in a 90° pipe elbow,” International Journal of Heat and Fluid Flow, 55, pp. 120–131. Available at: https://doi.org/10.1016/j.ijheatfluidflow.2015.07.011.
  • Sakowitz, A., Mihaescu, M. and Fuchs, L. (2014) “Turbulent flow mechanisms in mixing T-junctions by Large Eddy Simulations,” International Journal of Heat and Fluid Flow, 45, pp. 135–146. Available at: https://doi.org/10.1016/j.ijheatfluidflow.2013.06.014.
  • Selvam, P.K., Kulenovic, R. and Laurien, E. (2016) “Experimental and numerical analyses on the effect of increasing inflow temperatures on the flow mixing behavior in a T-junction,” International Journal of Heat and Fluid Flow, 61, pp. 323–342.
  • Takamura, H. et al. (2012) “Flow visualization and frequency characteristics of velocity fluctuations of complex turbulent flow in a short elbow piping under high Reynolds number condition,” Journal of Fluids Engineering, 134(10), pp. 101201–101209. Available at: https://doi.org/10.1115/1.4007436.
  • Tejada-Tovar, C.N., Villabona-Ortíz, A. and López-Barbosa, D. (2022) “Predictive modelling of a rapid stratified bed filter for turbidity removal from surface water,” Journal of Water and Land Development, 53, pp. 192–202. Available at: https://doi.org/10.24425/jwld.2022.140797.
  • Wichowski, P. et al. (2021) “Hydraulic and technological investigations of a phenomenon responsible for increase of major head losses in exploited cast-iron water supply pipes,” Water, 13(11), pp. 1604–1623. Available at: https://doi.org/10.3390/w13111604.
  • Wichowski, P., Siwiec, T. and Kalenik, M. (2019) “Effect of the concentration of sand in a mixture of water and sand flowing through PP and PVC elbows on the minor head loss coefficient,” Water, 11(4), pp. 828–845. Available at: https://doi.org/10.3390/w11040828.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96fd8c5f-c321-4062-8866-203a4064f174
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.