PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties of Easy Fill composites after storage in mouthwashes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the presented work was to investigate the influence of different mouthwashes on the chosen mechanical properties of different dental restorative composites. The null hypothesis was that the mouthwashes have influence on these properties. Design/methodology/approach: Four different restorative composites were used (Easy Fill Nano, Easy Fill Micro Hybrid, Easy Fill Flowable, Easy Fill Bulk). Samples were conditioned in different media: mouthwashes (Listerine Total Care with ethanol, Listerine Total Care Sensitive – alcohol-free) and distilled water. The samples were polymerized in Teflon moulds. The compressive strength, diametral tensile strength (DTS) and Vickers microhardness were examined. Findings: The research showed that the surface of composite materials was particularly sensitive to the action of mouthwashes. Both types of solutions, containing ethanol and without it lowered the microhardness values. The mouthwashes may also decrease other mechanical properties, like compressive strength of diametrical tensile strength. The results of the carried out investigations showed good mechanical properties of the tested materials, analogous to other materials of this type. Research limitations/implications: Other important properties of dental filling storied in mouthwashes should be analysed in future, including microgap between tooth and filling. Practical implications: The result contradicts the popular view that mouthwashes that do not contain ethanol are in general safer for composites in the context of reduction of mechanical properties. Both types of mouthwashes may reduce mechanical properties. Originality/value: The results of mechanical properties investigations of Easy Fill composites were presented and compared to other commercial materials. The changes of mechanical properties were also analysed after storing in different types of mouthwashes. So far, there has been no such research for these materials.
Rocznik
Strony
25--34
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
autor
  • Nova Clinic, ul. Jankego 22, 40-612 Katowice, Poland
autor
  • NZOZ Igor Kalamarz, Dental Practice, ul. Kotlarza 6, 40-139 Katowice, Poland
autor
  • Faculty of Mechanical Engineering, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, ul. Konarskiego 18a, Gliwice 44-100, Poland
Bibliografia
  • [1] N. Jayanthi, V. Vinod, Comparative evaluation of compressive strength and flexural strength of conventional core materials with nanohybrid composite resin core material an in vitro study, Journal of Indian Prosthodontic Society 13/3 (2013) 281-289, https://doi.org/10.1007/s13191-012-0236-4.
  • [2] D. Hurst, Amalgam or composite fillings - which material lasts longer? Evidence-Based Dentistry 15/2 (2014) 50-51, https://doi.org/10.1038/sj.ebd.6401026.
  • [3] M.G. Rasines Alcaraz, A. Veitz-Keenan, P. Sharmann, P.R. Schmidlin. D. Davis, Z. Iheozor-Ejiofor, Direct composite resin fillings versus amalgam fillings for permanent or adult posterior teeth, The Cochrane Database of Systematic Reviews (2014) CD005620, https://doi.org/10.1002/14651858.CD005620.pub2
  • [4] Á. Ástvaldsdóttir, J. Dagerhamn, J.W.V. van Dijkenen, A. Naimi-Akbar, G. Sandborgh-Englund, S. Tranæus, M. Nilsson, Longevity of posterior resin composite restorations in adults - A systematic reviw, Journal of Dentistry 43/8 (2015) 934-954, http://doi.org/10.1016/j.jdent.2015.05.001.
  • [5] N. Ilie, R. Hickel, Resin composite restorative materials, Australian Dental Journal 56/Suppl 1 (2011) 59-66, https://doi.org/10.1111/j.1834-7819.2010.01296.x.
  • [6] K.H.S. Chan, Y. Mai, H. Kim. K.C.T. Tong, D. Ng, J.C.M. Hsiao, Review: Resin Composite Filling, Materials 3/2 (2010) 1228-1243, https://doi.org/10.3390/ma3021228.
  • [7] H. Alzraikat, M. Burrow, G. Maghaireh, N. Taha, Nanofilled Resin Composite Properties and Clinical Performance: A Review, Operative Dentistry 43/4 (2018) E173-E190, https://doi.org/10.2341/17-208-T.
  • [8] P. Lambrechts, K. Goovaerts, D. Bharadwaj, J. De Munck, L. Bergmans, M. Peumans, B. Van Meerbeek, Degradation of tooth structure and restorative materials: A review, Wear 261/9 (2006) 980-986, https://doi.org/10. 1016/j.wear.2006.03.030.
  • [9] W.-Y. Shih, Microleakage in different primary tooth restorations, Journal or the Chinese Medical Association: JCMA 79/4 (2016) 228-234, https://doi.org/10.1016/j.jcma.2015.10.007.
  • [10] J.P. Leal, D. Silva, J. Damasceno, R.F.M. LeaI, C. da C. Oliveira-Junior, V.L.G. Prado. G.C. Vale, Effect of Mouthwashes on Solubility and Sorption of Restorative Composites, International Journnl of Dentistry 2017 (2017) Article ID 5865691, https://doi.org/10.1155/2017/5865691 .
  • [11] J. Krüger, R. Maletz, P. Ottl, M. Warkentin, In vitro aging behavior of dental composites considering the influence of filler content storage media and incubation time, PloS One 13/4 (2018) e195160, https://doi.org/10.1371/journal.pone.0195160.
  • [12] E.C. Vouvoudi, I.D. Sideridou, Effect of food/oral simulating liquids on dynamic mechanical thermal properties of dental nanohybrid light-cured resin composites, Dental Materials: Official Publication of the Academy of Dental Materials 29/8 (2013) 842-850, https://doi.org/10.1016/j.dental.2013.04.013.
  • [13] S. Hahnel, A. Henrich, R. Bürgers, G. Handel, M. Rosentritt, Investigation of mechanical properties of modern dental composites after artificial aging for one year, Operative Dentistry 35/4 (2010) 412-419, https://doi.org/10.2341/09-337-L.
  • [14] S.B.P. Fúcio, F.G. Carvalho, L.C. Sobrinho, M.A.C. Sinhoreti, R.M. Puppin-Rontani, The influence of 30-day-old Streptococcus mutans biofilm on the surface of esthctic restorative materials - an in vitro study, Journal of Dentistry 36/10 (2008) 833-839, https://doi.org/10.1016/j.jdent.2008.06.002.
  • [15] E.G. Mota, A. Weiss, A.M. Spohr, H.M.S. Oshima, L.M.N. de Carvalho, Relationship between filler content and selected mechanical properties of six microhybrid composites, Revista Odonto Ciência 26/2 (2011) 151-155, https://doi.org/10.1590/S1980-65232011000200010.
  • [16] R. Stencel, J. Kasperski, W. Pakieła, A. Mertas, E. Bobela, I. Barszczewska-Rybarek, G. Chladek, Properties of Experimental Dental Composites Containing Antibacterial Silver-Releasing Filler, Materials 11/6 (2018) E1031, https://doi.org/10.3390/ma11061031.
  • [17] R.W. Penn, R.G. Craig, J.A. Tesk, Diametral tensile strength and dental composites, Dental Materials 3/1 (1987) 46-48, https://doi.org/10.1016/S0109-5641 (87) 80062-3.
  • [18] M. Łukomska-Szymańska, B. Zarzycka, J. Grzegorczyk, K. Sokołowski, K. Półtorak, J. Sokołowski, B. Łapińska, Antibacterial Properties of Calcium Fluoride-Based Composite Materials: In Vitro Study, BioMed Research International 2016 (2016) 1048320, https://doi.org/10.1155/2016/1048320.
  • [19] G. Chladek, K. Basa, J. Żmudzki, P. Malara, A.J. Nowak, J. Kasperski, Influence of aging solutions on wear resistance and hardness of selected resin-based dental composites, Acta of Bioengineering and Biomechanics 18/3 (2016) 43-52.
  • [20] E. Korkut, E. Torlak, M. Altunsoy, Antimicrobial and mechanical properties of dental resin composite containing bioactive glass, Journal of Applied Biomaterials, Functional Materials 14/3 (2016) e296-e301, https://doi.org/10.5301/jabfm.5000271.
  • [21] M.R. Galvão, S.G.F.R. Caldas, S. Calabrez-Filho, E.A. Campos, V.S. Bagnato, A.N.S. Rastelli, M.F. Andrade, Compressive strength of dental composites photo-activated with different light tips, Laser Physics 23/4 (2013) 045604, https://doi.org/10.1088/1054-660X/23/4/045604.
  • [22] M. Moezzyzadeh, Evaluation of the Compressive Strength of Hybrid and Nanocomposites, Shahid Beheshti University Dental Journal 10/1 (2012) 23-28.
  • [23] C. Meenakumari, K.M. Bhat, R. Bansal, N. Singh, Evaluation of Mechanical Properties of Newer Nanoposterior Restorative Resin Composites: An in vitro Study, Contemporary Clinical Dentistry (2018) S142-S146, https://doi.org/10.4103/ccd.ccd_160_18.
  • [24] P.D. Williams, D.C. Smith, Measurement of the tensile strength of dental restorative materials by use of a diametral compression test, Journal of Dental Research 50/2 (1971) 436-442, https://doi.org/10.1177/00220345710500025401.
  • [25] B. Dejak, A. Młotkowski, A comparison of stresses in molar teeth restored with inlays and direct restorations, including polymerization shrinkage of composite resin and tooth loading during mastication, Dental Materials: Official Publication of the Academy of Dental Materials 31/3 (2015) e77-e87, https://doi.org/10.1016/j.dental.2014.11.016.
  • [26] A. Della Bona, P. Benetti, M. Borba, D. Cecchetti, Flexural and diametral tensile strength of composite resins, Brazilian Oral Research 22/1 (2008) 84-89.
  • [27] S.B. Mitra, D. Wu, B.N. Holmes, An application of nanotechnology in advanced dental materials, Journal of the American Dental Association (1939) 134/10 (2003) 1382-1390.
  • [28] D.S.M. Casselli, C.C. Worschech, L.A.M.S. Paulillo, C.T.D.S. Dias, Diametral tensile strength of composite resins submitted to different activation techniques, Brazilian Oral Research 20/3 (2006) 214-218.
  • [29] C. Poggio, M. Lombardini, S. Gaviati, M. Chiesa, Evaluation of Vickers hardness and depth of cure of six composite resins photo-activated with different polymerization modes, Journal of Conservative Dentistry: JCD 15/3 (2012) 237-241, https://doi.org/10.4103/0972-0707.97946.
  • [30] M.S.C.C. Festuccia, L. da F.R. Garcia, D.R. Cruvinel, F. de C.P. Pires-De-Souza, Color stability, surface roughness and microhardness of composites submitted to mouthrinsing action, Journal of appllied oral science: revista FOB 20/2 (2012) 200-205.
  • [31] D. de A. Miranda, C.E.D.S. Bertoldo, F.H.B. Aguiar, D.A.N.L. Lima, J.R. Lovadino, Effects of mouthwashes on Knoop hardness and surface roughness of dental composites after different immersion times, Brazilian Oral Research 25/2 (2011) 168-173.
  • [32] K.H. Al-Samadani, Surface Hardness of Dental Composite Resin Restorations in Response to Preventive Agents, The Journal of Contemporary Dental Practice 17/12 (2016) 978-984.
  • [33] K.K. Roy, K.P. Kumar, G. John, S.G. Sooraparaju, S.K. Nujella, K. Sowmya, A comparative evaluation of effect of modern-curing lights and curin modes on conventional and novel-resin monomers, Journal of conservative dentistry: JCD 21/1 (2018) 68-73, https://doi.org/10.4103/JCD.JCD_71_17.
  • [34] Y.A. Abed, H.A. Sabry, N.A. Alrobeigy, Degree of conversion and surface hardness of bulk-fill composite versus incremental-fill composite, Tanta Dental Journal 12/2 (2015) 71-80, https://doi.org/10.1016/j.tdj.2015.01.003.
  • [35] K. Pain, N. Tekçe, S. Tuncer, M. Demirci, F. Öznurhan, M. Serim, Flexural strength and microhardness of anterior composites after accelerated aging, Journal of Clinical and Experimental Dentistry 9/3 (2017) e424-e430, https://doi.org/10.4117/jced.53463.
  • [36] L. Ceballos, M.V. Fuentes, H. Tafalla, A. Martinez, J. Flores, J. Rodriguez, Curing effectiveness of resin composites at different exposure times using LED and halogen units, Medicina Oral, Patologia Oral Y Cirugia Bucal 14/1 (2009) E51-E56.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96f4fdde-a53f-48c1-8282-5357e166454b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.