PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Realization of XNOR logic function with all-optical high contrast XOR and NOT gates

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we propose the realization of XNOR logic function by using all-optical XOR and NOT logic gates. Initially, both XOR and NOT gates are designed, simulated and optimized for high contrast outputs. T-shaped waveguides are created on the photonic crystal platform to realize these logic gates. An extra input is used to perform the inversion operation in the NOT gate. Inputs in both the gates are applied with out of phase so as to have a destructive interference between them and produce negligible intensity for logic ‘0’. The XOR and NOT gates are simulated using Finite Difference Time Domain method which results with a high contrast ratio of 55.23 dB and 54.83 dB, respectively at a response time of 0.136 ps and 0.1256 ps. Later, both the gates are cascaded by superimposing the output branch of the waveguide of XOR gate with the input branch of the waveguide of NOT gate so that it can be resulted with compact size for XNOR logic function. The resultant structure of XNOR logic came out with the contrast ratio of 12.27 dB at a response time of 0.1588 ps. Finally, it can be concluded that the proposed structures with fair output performance can suitably be applied in the design of photonic integrated circuits for high speed computing and telecommunication systems.
Twórcy
autor
  • Department of Electronics Engineering, Pondicherry University, Pondicherry, 605014, India
  • Department of Electronics Engineering, Pondicherry University, Pondicherry, 605014, India
Bibliografia
  • [1] A.B. Hamed, M. Farhad, S. Somaye, H.K. Mahdi, A 2*4 all optical decoder switch based on photonic crystal ring resonators, J. Mod. Opt. 62 (2014) 430–434.
  • [2] P. Rani, Y. Kalra, R.K. Sinha, Realization of AND gate in Y-shaped photonic crystal waveguide, Opt. Commun. 298–299 (2013) 227–231.
  • [3] R. Mehra, S. Jaiswal, H.K. Dixit, Optical computing with semiconductor optical amplifiers, Opt. Eng. 51 (2012), 080901-1-080901-7.
  • [4] H. Soto, C.A. Diaz, J. Topomondzo, D. Erasme, L. Schares, G. Guekos, All-optical AND gate implementation using cross-polarization modulation in a semiconductor optical amplifier, IEEE Photon. Technol. Lett. 14 (2002) 498–500.
  • [5] A.K. Cherri, All-optical negabinary adders using Mach-zehnder interferometer, Opt. Laser Technol. 43 (2011) 194–203.
  • [6] T. Chattopadhyay, J.N. Roy, A.K. Chakraborty, Polarization encoded all-optical quaternary R-S flipflop using binary latch, Opt. Commun. 282 (2009)1287–1293.
  • [7] N. Pahari, A. Gichhait, All-optical serial data transfer between registers using optical non-linear materials, Optik 123 (2012) 462–466.
  • [8] C.L. Lee, R.K. Lee, Y.M. Kao, Design of multichannel DWDM fiber Bragg grating filters by Lagrange multiplier constrained optimization, Opt. Express 14 (2006) 11002–11011.
  • [9] J. Wang, J. Sun, Q. Sun, Proposal for all-optical switchable OR/XOR logic gates using sum-frequency generation, IEEE Photon. Technol. Lett. 19 (2007) 541–543.
  • [10] S.A. Esmaeli, A.K. Cherri, Photonic crystal based all-optical arithmetic circuits without SOA-based switches, Optik 125 (2014) 3710–3713.
  • [11] J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic Crystal: Molding the Flow of Light, Princeton University Press, Princeton, 1995.
  • [12] J.D. Joannopoulos, Photonic crystals: putting a new twist on light, Nature (London) 386 (1997) 143–149.
  • [13] C.J. Wu, C.P. Liu, Z. Ouyang, Compact and low-power optical logic NOT gate based on photonic crystal waveguides without optical amplifiers and nonlinear materials, Appl. Opt. 51 (2012) 680–685.
  • [14] W. Liu, D. Yang, G. Shen, H. Tian, Y. Ji, Design of ultra compact all-optical XOR,XNOR NAND and OR gates using photonic crystal multi-mode interferencewaveguides, Opt. Laser Technol. 50 (2013) 55–64.
  • [15] T. Chunrong, X. Dou, Y. Lin, H. Yin, B. Wu, Q. Zhao, Design of all-optical logic gates avoiding external phase shifters in a two-dimensional photonic crystal based on multi- mode interference for BPSK signals, Opt. Commun. 316 (2014) 49–55.
  • [16] Z. Mohebbi, N. Nozhat, F. Emami, High contrast all-optical logic gates based on 2D nonlinear photonic crystal, Opt. Commun. 355 (2015) 130–136.
  • [17] E.H. Shaik, N. Rangaswamy, Implementation of photonic crystal based all-optical half adder using T-shaped waveguides, in: IEEE proceedings of Second International Conference on Computing and Communications Technologies, Tamil Nadu, India, 2017, pp. 148–150.
  • [18] H. Sharifi, S.M. Hamidi, K. Navi, A new design procedure for all-optical photonic crystal logic gates and functions based on threshold logic, Opt. Commun. 370 (2016) 231–238.
  • [19] Q. Liu, Z. Ouyang, C.J. Wu, C.P. Liu, J.C. Wang, All-optical half adder based on cross structures in two-dimensional photonic crystals, Opt. Express 16 (2008) 18992–19000.
  • [20] G. Kiyanoosh, M. Ali, C. Iman, G. Dariush, All-optical XOR and OR logic gates based on line and point defects in 2-D photonic crystal, Opt. Laser Technol. 78 (2016) 139–142.
  • [21] E.H. Shaik, N. Rangaswamy, Improved design of all-optical photonic crystal logic gates using T-shaped waveguide, Opt. Quantum Electron. 48 (2016) 1–15.
  • [22] E.H. Shaik, N. Rangaswamy, Single photonic crystal structure for realization of NAND and NOR logic functions by cascading basic gates, J. Comput. Electron. (2017), http://dx.doi.org/10.1007/s10825-017-1081-9.
  • [23] P. Rani, K. Yogita, R.K. Sinha, Design of all optical logic gates in photonic crystal waveguides, Opt. Int. J. Light Electron Opt. 126 (2015) 950–955.
  • [24] P. Rani, S. Fatima, K. Yogita, R.K. Sinha, Realization of all optical logic gates using universal NAND gates on photonic crystal platform, Superlattices Microstruct. 109 (2017) 619–625.
  • [25] S. Aryan, S. Mohammednejad, A. Bahrami, All-optical photonic crystal AND, XOR and OR logic gates using nonlinear Kerr effect and ring resonators, J. Mod. Opt. 62 (2015) 693–700.
  • [26] T.A. Moniem, All-optical S-R flip flop 2-D photonic crystal, Opt. Quantum Electron. 47 (2015) 2843–2851.
  • [27] K. Venkatachakam, D. Sriram Kumar, S. Robinson, Performance analysis of 2D-photonic crystal based eight channel wavelength division demultiplexer, Optik 127 (2016) 8819–8826.
  • [28] Y.C. Jiang, S.B. Liu, H.F. Zhang, X.K. Kong, Realization of all optical half-adder based on self-collimated beams by two-dimensional photonic crystals, Opt. Commun. 348 (2015) 90–94.
  • [29] Y. Zhang, Y. Zhang, B. Li, Optical switches and logic gates based on self-collimated beams in two dimensional photonic crystals, Opt. Express 15 (2007) 9287–9292.
  • [30] X.S. Christina, A.P. Kabilan, Design of optical logic gates using self-collimated beams in 2D photonic crystal, Cryst. Photonic Sens. 2 (2012) 173–179.
  • [31] M.D. Nirmala, M. Vincent, Interference based square lattice photonic crystal logic gates working with different wavelengths, Opt. Laser Technol. 80 (2016) 214–219.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96ead671-d6bb-4603-9693-1f443e0d55f4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.