PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determining the envelope of the blood flow velocity in Doppler ultrasound

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes and tests a method for automatically determining the envelope of the blood flow velocity curve in ultrasonic Doppler imaging, which was implemented in a prototype of the 128-channel mobile ultrasound B-mode scanner. On the basis of the determined envelopes, algorithms were also developed for the automatic determination of the most important characteristic points of the Doppler blood flow spectrum in pulse wave Doppler imaging mode and the most relevant blood flow parameters. Sufficiently good repeatability and precision were obtained with low computational complexity.
Twórcy
  • DRAMIŃSKI S.A., Poland
  • Wroclaw University of Science and Technology, Poland
  • CYBERMEDICS, Poland
  • DRAMIŃSKI S.A., Poland
Bibliografia
  • [1] W. Schäberle, “Ultrasonography in Vascular Diagnosis”, Springer-Verlag, 2011. https://doi.org/10.1007/978-3-642-02509-9
  • [2] Doppler Flow Pump Model 769, User Guide, Sun Nuclear. https://www.sunnuclear.com/uploads/documents/datasheets/769-DS-090723-1.pdf
  • [3] Doppler Fluid Model 769DF, User Guide, Sun Nuclear. https://www.sunnuclear.com/uploads/documents/datasheets/769-DS-072220-1.pdf
  • [4] A. Nowicki, ,,Ultrasonografia - wprowadzenie do obrazowania i metod dopplerowskich”, Wydawnictwo IPPT PAN, Warszawa, 2016 (in Polish).
  • [5] G. Fiori, F. Fuiano, A. Scorza, et al., “Doppler Flow Phantom Stability Assessment through STFT Technique in Medical PW Doppler: a preliminary study”, presented at 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT Conference, Rome, June 07-09, 2021. https://doi.org/10.1109/MtroInd4.0IoT51437.2021.9488513
  • [6] I.B. Gonçalves, A. Leiria, M.M.M. Moura, “STFT or CWT for the detection of Doppler ultrasound embolic signals”, International Journal for Numerical Methods in Biomedical Engineering vol. 29, pp. 964-976, 2013. https://doi.org/10.1002/cnm.2546
  • [7] L.R. Rabiner, R.W. Schafer, “Digital processing of speech signals”, Prentice Hall, Englewood Cliffs, New Jersey, 1978.
  • [8] L.R. Rabiner, R.W. Schafer, “Introduction to digital speech processing”, now Publishers Inc., Boston-Delft, 2007.
  • [9] J.B. Allen and L.R. Rabiner, “A unified approach to short-time Fourier analysis and synthesis,” in Proc. of the IEEE , vol. 65, pp. 1558-1564, 1977. https://doi.org/10.1109/PROC.1977.10770
  • [10] K.-J. Wolf, F. Fobbe, “Color Duplex Sonography, Principles and Clinical Applications”, Thieme Medical Publishers, New York, 1995.
  • [11] J.B. Elsner, A.A. Tsonis, “Singular Spectrum Analysis. A New Tool in Time Series Analysis”, Springer New York, New York, 1996. https://doi.org/10.1007/978-1-4757-2514-8
  • [12] J.-E. Trihan, G. Mahé, J.-P. Laroche, et al., “Arterial Blood-Flow Acceleration Time on Doppler Ultrasound Waveforms: What Are We Talking About?”, Journal of Clinical Medicine, vol. 12, no. 3, 2023. https://doi.org/10.3390/jcm12031097
  • [13] K. Iizuka, H. Takekawa, A. Iwasaki, et al., “Suitable methods of measuring acceleration time in the diagnosis of internal carotid artery stenosis”, Journal of Medical Ultrasonics, vol. 40, pp. 327-333, 2020. https://doi.org/10.1007/s10396-019-01000-x
  • [14] M. Bardelli, F. Veglio, E. Arosio, et al., “New intrarenal echo-Doppler velocimetric indices for the diagnosis of renal artery stenosis”, Kidney International, vol. 69, pp. 580-587, 2006. https://doi.org/10.1038/sj.ki.5000112
  • [15] J.J.W.M. Brouwers, J.F.Y. Jiang, R.T. Feld, et al., “A New Doppler-Derived Parameter to Quantify Internal Carotid Artery Stenosis: Maximal Systolic Acceleration”, Annals of Vascular Surgery, vol. 81, pp. 202-210, 2022. https://doi.org/10.1016/j.avsg.2021.09.056
  • [16] J.J.W.M. Brouwers, L.P. van Doorn, L. Pronk, et al., “Doppler Ultrasonography Derived Maximal Systolic Acceleration: Value Determination with Artificially Induced Stenosis”, Vascular and Endovascular Surgery, vol. 56, pp. 472-479, 2022. https://doi.org/10.1177/15385744221076269
  • [17] J.J.W.M Brouwers, L.P. van Doorn, R.C. van Wissen, H. Putter, J.F. Hamming, “Using maximal systolic acceleration to diagnose and assess the severity of peripheral artery disease in a flow model study”, Journal of Vascular Surgery, vol. 71, pp. 242-249, 2020. https://doi.org/10.1016/j.jvs.2019.01.088
  • [18] R. Gosling, F. Dunbar, D. King, et al. “The quantitative analysis of occlusive peripheral arterial disease by a non-intrusive technique”, Angiology, vol. 22, pp. 52-55, 1971. https://doi.org/10.1177/000331977102200109
  • [19] R. Gosling, D. King, “Continuous wave ultrasound as an alternative and complement to X-rays in vascular examination”, in Cardiovascular Applications of Ultrasound, chapter 22, R.S. Reneman Ed., Amsterdam: North-Holland, pp. 266-282, 1974.
  • [20] A. Nowicki, “Podstawy ultrasonografii dopplerowskiej”. WydawnictwoNaukowe PWN, Warszawa, 1995 (in Polish).
  • [21] C.W.L. Pourcelot, „Doppler techniques in cerebral vascular disturbances”, in Doppler Ultrasound in the Diagnosis of Cerebrovascular Disease, R. Reneman and A. Hoeks Ed., Chichester: Research Studies Press, 1982.
  • [22] ATS Cardiac Doppler Flow Phantom Model 523, User Guide, Sun Nuclear. https://www.sunnuclear.com/uploads/documents/datasheets/ATS523APhantom_0080522.pdf
Uwagi
The research described in the paper was carried out as part of the POIR.01.01.01-00-1462/19 research project funded by the National Centre for Research and Development (NCBR) with funds from the European Union.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96e8e745-ec8b-4d27-8738-54456c31c7d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.