PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Event-based S-transform approach for nonintrusive load monitoring

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Metoda monitorowania obciążenia systemu energetycznego wykorzystująca transformatę S
Języki publikacji
EN
Abstrakty
EN
In this study, a nonintrusive load monitoring system is developed by analyzing the power signal obtained from a single point of power meter installation to detect ON/OFF load activities. A mathematically designed model with backpropagation neural network is utilized in load pattern recognition to decompose the load operation. Leveraging its unique load signature profile, the S-transform approach is employed to extract the features from the aggregate power signal and analyze the detection of load start-up transient from signal processing. To improve the accuracy of load identification for unknown data, the power factor is used as an additive feature with 99.32% load recognition accuracy.
PL
W artykule analizowany jest system monitorowania obciążenia sieci. Wykorzystano sieć neuronową do rozpoznawania rodzaju Transformata S jest użyta do ekstrakcji danych z sygnału mocy. Dodatkowo do identyfikacji obciążenia użyto współczynnik mocy.
Rocznik
Strony
194--198
Opis fizyczny
Bibliogr. 17 poz., rys., wykr.
Twórcy
autor
  • Student, Department of Electrical, Electronic, and Systems Engineering, Universiti Kebangsaan Malaysia
autor
  • Department of Electrical, Electronic, and Systems Engineering, Universiti Kebangsaan Malaysia
autor
  • Tenaga Nasional Berhad Research
autor
  • Student, Department of Electrical, Electronic, and Systems Engineering, Universiti Kebangsaan Malaysia
Bibliografia
  • [1] “Smart Grid : The Future of the Electric Power System An Introduction to the Smart Grid,” ENBALA Power Networks ENBALA, September, 2011.
  • [2] F. Sultanem, “Using Appliance Signatures for Monitoring Residential Loads at Meter Panel Level,” IEEE Trans. Power Deliv., vol. 6, no. 4, pp. 1380–1385, 1991
  • [3] G. W. Hart, “Nonintrusive appliance load monitoring,” Proc. IEEE, vol. 80, no. 12, pp. 1870–1891, 1992.
  • [4] H. Pihala, “Non-intrusive appliance load monitoring system based on a modern kWh-meter," Espoo: VTT Publications 356, 1998.
  • [5] L. K. Norford and S. B. Leeb, “Non-intrusive electrical load monitoring in commercial buildings based on steady-state and transient load-detection algorithms,” in Energy and Buildings, vol. 24, 1996, pp. 51–64.
  • [6] H. H. Chang, H. T. Yang, and C. L. Lin, “Load identification in neural networks for a non-intrusive monitoring of industrial electrical loads,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2008, vol. 5236 LNCS, pp. 664–674.
  • [7] S. S. Kuruppu and N. A. Kulatunga, “Smart meter based nonintrusive appliance detection algorithm for local real time feedback purposes,” in 2012 IEEE Innovative Smart Grid Technologies - Asia, ISGT Asia 2012, 2012, pp. 1–5.
  • [8] Y. Jimenez, C. Duarte, J. Petit, and G. Carrillo, “Feature extraction for nonintrusive load monitoring based on STransform,” 2014 Clemson Univ. Power Syst. Conf., pp. 1–5, Mar. 2014.
  • [9] J. F. Martins, R. Lopes, C. Lima, E. Romero-Cadaval, and D. Vinnikov, “A novel nonintrusive load monitoring system based on the S-Transform,” Proc. Int. Conf. Optim. Electr. Electron. Equipment, OPTIM, pp. 973–978, 2012.
  • [10] K. Yoshimoto, Y. Nakano, Y. Amano, and B. Kermanshahi, “Non-Intrusive Appliances Load Monitoring System Using Neural Networks,” in ACEEE, 2000, pp. 183–194.
  • [11] D. L. Racines and J. E. Candelo, “Non Intrusive Load Identification with Power and Impedance obtained from Smart Meters,” Int. J. Eng. Technol., vol. 6, no. 4, pp. 1867–1876, 2014.
  • [12] P. Ducange, F. Marcelloni, and M. Antonelli, “A Novel Approach Based on Finite-State Machines with Fuzzy Transitions for Nonintrusive Home Appliance Monitoring,” vol. 10, no. 2, pp. 1185–1197, 2014.
  • [13] H.-H. Chang, P. W. Wiratha, and N. Chen, “A Non-intrusive Load Monitoring System Using an Embedded System for Applications to Unbalanced Residential Distribution Systems,” Energy Procedia, vol. 61, pp. 146–150, 2014.
  • [14] R. G. Stockwell, L. Mansinha, and R. P. Lowe, “Localization of the complex spectrum: The S transform,” IEEE Trans. Signal Process., vol. 44, no. 4, pp. 998–1001, 1996.
  • [15] C. R. Pinnegar and L. Mansinha, “The S-transform with windows of arbitrary and varying shape,” Geophysics, vol. 68, no. 1, p. 381, 2003.
  • [16] P. Pillaya Bhattacharjee, “Application of wavelets to model short-term power system disturbances,” IEEE Trans. Power Syst., vol. 11, no. 4, pp. 2031–2037, 1996.
  • [17] J. Sola and J. Sevilla, “Importance of input data normalization for the application of neural networks to complex industrial problems,” IEEE Trans. Nucl. Sci., vol. 44, no. 3 PART 3, pp. 1464–1468, 1997.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96e34d14-91de-4ebc-81d4-96788812f7c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.