PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Impact of FDM Process Parameters on the Compression Strength of 3D Printed PLA Filaments for Dental Applications

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study evaluated Fused Deposition Modeling (FDM) for printing objects with maximum compression strength by focusing on critical process parameters. Infill density, outer shell width, infill pattern, and layer thickness were examined. Taguchi studies tested all parameter values with the fewest possible tests. Infill density (55.488 Mpa) affected compressive resistance the most, followed by outer shell width (1.8 mm), infill pattern (75%), infill pattern type (concentric), nozzle diameter (0.6 mm), and layer thickness (0.3 mm) and the liner regression model which use to prediction experimental value shown minimum percentage error(4%). The study also demonstrated the fabrication of 3D-printed crowns using PLA and FDM printing as temporary crowns, which remained intact without any discomfort until the permanent prosthesis was ready. The average printing time for temporary crowns was approximately 7 minutes. This study indicates that 3D printing of temporary crowns with PLA using FDM printing is a convenient process for dentists the result for crowns for teeth 13 and 16 of the human case study showed good accuracy and good resistance to compression.
Słowa kluczowe
Twórcy
  • Metallurgical Engineering and Production Department, University of Technology, Baghdad, Iraq
  • Metallurgical Engineering and Production Department, University of Technology, Baghdad, Iraq
Bibliografia
  • 1. Budzik G. et al. Geometrical Accuracy of Threaded Elements Manufacture by 3D Printing Process. Advances in Science and Technology Research Journal. 2022; 16(5): 52–63.
  • 2. Zubrzycki J. et al. Influence of 3D Printing Parameters by FDM Method on the Mechanical Properties of Manufactured Parts. Advances in Science and Technology Research Journal. 2023; 17(1): 5–45.
  • 3. Global additive manufacturing market growth 2026. (n.d.). Statista. Retrieved August 11, 2021, from https://www.statista.com/statistics/284863/additive-manufacturing- projected-global-market-size.
  • 4. Torres J., Cole M., Owji A., DeMastry Z., Gordon, A. An approach for mechanical property optimization of fused deposition modeling with polylacticacid via the design of experiments. Rapid Prototyping Journal. 2016; 22: 387–404. https://doi. org/10.1108/RPJ-07-2014-0083
  • 5. Schmitt, M., Mehta, R.M., Kim, I.Y. Additive manufacturing infill optimization for automotive 3Dprinted ABS components. Rapid Prototyping Journal. 2019; 26(1): 89–99. https://doi.org/10.1108/ RPJ-01-2019-0007
  • 6. Baich, L., Manogharan, G., Marie, H. 2015. Study of infill print design on production cost-time of 3D printed ABS parts. International Journal of Rapid Manufacturing, 5, 308. https://doi.org/10.1504/ IJRAPIDM.2015.074809
  • 7. Huang, S.H., Liu, P., Mokasdar, A., Hou, L. Additive manufacturing and its societal impact: A literature review. The International Journal of Advanced Manufacturing Technology. 2013; 67(5): 1191– 1203. https://doi.org/10.1007/s00170-012-4558-5
  • 8. Arceo F. 2021. Infill Patterns; Which is the strongest one for 3D printing? 3D Solved. Retrieved August 20, 2021. from https://3dsolved.com/infill- patterns which-is-the-strongest-one-for-3d-printing.
  • 9. Aloyaydi B., Sivasankaran S., Mustafa A. Investigation of infill patterns on the mechanical response of 3D printed poly-lactic acid. Polymer Testing. 2020; 87: 106557. https://doi.org/10.1016/j. polymertesting.2020.106557.
  • 10. Alvarez K., Lagos R., Aizpun M. Investigating the influence of infill percentage on the mechanical properties of fused deposition modeled ABS parts. Ingeniería e Investigación. 2016; 36: 110–116. https://doi.org/10.15446/ing.investig.v36n3.56610
  • 11. Infill settings. Ultimaker Support. Retrieved June 14, 2021. 2020. https://support.ultimaker.com/hc/ en-us/articles/360012607079-Infill- settings.
  • 12. Infill patterns. Prusa Knowledgebase. Retrieved June 17, 2021. 2021. https://help.prusa3d.com/en/ article/inifill-patterns_177130.
  • 13. Podroužek J., Marcon M., Ninčević K., Wan-Wendner R. Bio-Inspired 3D infill patterns for additive manufacturing and structural applications. Materials. 2019; 12(3): 499. https://doi.org/10.3390/ma12030499
  • 14. Gopsill J., Hicks B. Deriving infill design of fused deposition modelled parts from predicted stress pro- files. V02AT03A033. 2016. https://doi.org/10.1115/ DETC2016-59935
  • 15. Gopsill J.A., Shindler J., Hicks B.J. Using finite element analysis to influence the infill design of fused deposition modeled parts. Progress in Additive Manufacturing. 2018; 3(3): 145–163. https:// doi.org/10.1007/s40964-017-0034-y
  • 16. Lalegani Dezaki, M., Mohd Ariffin, M.K.A. The effects of combined infill patterns on mechanical properties in FDM Process. Polymers. 2020; 12(12): 2792. https://doi.org/10.3390/polym12122792
  • 17. Wu J., Aage N., Westermann R., Sigmund O. Infill optimization for additive manufacturing—approach- ing bone-like porous structures. IEEE Transactions on Visualization and Computer Graphics. 2018; 24: 1127. https://doi.org/10.1109/TVCG.2017.2655523
  • 18. Yu H., Huang J., Zou B., Shao W., Liu J. 2020. Stress-constrained shell-lattice infill structural op- timization for additive manufacturing. Virtual and Physical Prototyping, 15(1), 35–48. https://doi.org /10.1080/17452759.2019.1647488
  • 19. Rishi Tyagi, et.all. Three-dimensional printing: Fine-tuning of the face of pediatric dentistry. Journal of Research in Dental Sciences. 2022.
  • 20. Waad Q., Shiaa I. et al. A Novel Method Based on Interpolation for accurate 3D reconstruction from CT images. International Journal of Intelligent Engineering and Systems. 2023; 16(2): 506–516.
  • 21. Katreva I., et al. 3D printing – an alternative of conventional crown fabrication: A case report. Journal of IMAB - Annual Proceeding (Scientific Papers) April, 2018; 2048–2054.
  • 22. Eun-Kyong K. et al. Three-dimensional printing of temporary crowns with polylactic acid polymer using the fused deposition modeling technique: a case series journal of Yeungnam Medical Science [Epub ahead of print]. 2022. https://doi.org/10.12701/ jyms.2022.00612.4
  • 23. D20 Committee. Test Method for Compressive Properties of Rigid Plastics. ASTM International. 2015. https://doi.org/10.1520/D0695-15
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96e2a4cd-caa2-4ec2-b71d-d7c8565afad8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.