Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
: The aim of this article is to present the results of research aimed at confirmation whether it is possible to form an intermediate band in GaAs implantation with H+ ions. The obtained results were discussed with particular emphasis on possible applications in the photovoltaic industry. As it is commonly known, the idea of intermediate band solar cells reveals considerable potential as the most fundamental principle of the next generation of semiconductors solar cells. In progress of the research, a series of GaAs samples were subjected to poly-energy implantation of H+ ions, followed by high-temperature annealing. Tests were conducted using thermal admittance spectroscopy, under conditions of variable ambient temperature, measuring signal frequency in order to localize deep energy levels, introduced by ion implantation. Activation energy ∆E was determined for additional energy levels resulting from the implantation of H+ ions. The method of determining the activation energy value is shown in Fig. 2 and the values read from it are σ0 = 10−9 (Ω·cm)−1 for 1000/T0 = 3.75 K−1 and σ1 = 1.34 × 10−4 (Ω·cm)−1 for 1000/T1 = 2.0 K−1 . As a result, we obtain ∆E ≈ 0.58 eV. It was possible to identify a single deep level in the sample of GaAs implanted with H+ ions. Subsequently, its location in the band gap was determined by estimating the value of ∆E. However, in order to confirm whether the intermediate band was actually formed, it is necessary to perform further analyses. In particular, it is necessary to implement a new analytical model, which takes into consideration the phenomena associated with the thermally activated mechanisms of carrier transport as it was described in [13]. Moreover, the influence of certain parameters of ion implantation, post-implantation treatment and testing conditions should also be considered.
Czasopismo
Rocznik
Tom
Strony
925--931
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wz.
Twórcy
autor
- Lublin University of Technology Nadbystrzycka 38A, 20-618 Lublin, Poland
autor
- Lublin University of Technology Nadbystrzycka 38A, 20-618 Lublin, Poland
Bibliografia
- [1] Best research-cell efficiencies, Rev. 10-30-2017, National Renewable Energy Laboratory (NREL) (2017).
- [2] Green M., Emery K., Hishikawa Y., Warta W., Dunlop E., Solar cell efficiency tables (version 41), Progress in Photovoltaics: Research and Applications, vol. 21, iss. 1 (2013), DOI: 10.1002/pip.2352.
- [3] Mattos L., Scully S., Syfu M., Olson E., Yang L., Ling C., Kayes B., He G., New module efficiency record: 23.5% under 1-sun illumination using thin-film single-junction GaAs solar cells, IEEE 38th Photovoltaic Specialists Conference (PVSC), pp. 3187–3190 (2012).
- [4] Kayes B., Nie H., Twist R., Spruytte S., Reinhardt F., Kizilyalli I., Higashi G., 27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination, IEEE 37th Photovoltaic Specialists Conference (PVSC), pp. 4–8 (2011).
- [5] Silverman T.J., Deceglie M.G., Marion B., Cowley S., Kayes B., Kurtz S., Outdoor performance of a thin-film gallium-arsenide photovoltaic module, IEEE 39th Photovoltaic Specialists Conference (PVSC), pp. 103–108 (2013), DOI: 10.1109/PVSC.2013.6744109.
- [6] Lee Y., Park C., Balaji N., Lee Y.J., Dao V.A., High-efficiency silicon solar cells: A review, Israel Journal of Chemistry, vol. 55, pp. 1050–1063 (2015).
- [7] Luque A., Hegedus S., Handbook of Photovoltaic Science and Engineering, Second Edition, John Wiley & Sons (2011).
- [8] Kowalski M., Partyka J., W ˛egierek P., Żukowski P., Komarov F.F., Jurchenko A.V., Freik D., Frequencydependent annealing characteristics of the implant-isolated GaAs layers, Vacuum, vol. 78, pp. 311–317 (2005), DOI: 10.1016/j.vacuum.2005.01.112.
- [9] Chandra A., Anderson G., Melkote S., Gao W., Haitjema H., Wegener K., Role of surfaces and interfaces in solar cell manufacturing, CIRP Annals – Manufacturing Technology, vol. 63, pp. 797–819 (2014), DOI: 10.1016/j.cirp.2014.05.008.
- [10] Stievenard D., Boddaert X., Bourgoin J.C., von Bardeleben H.J., Behavior of electron-irradiationinduced defects in GaAs, Phys. Rev. B 41, 5271 (1990), DOI: 10.1103/PhysRevB.41.5271.
- [11] Tan H.H., Williams J.S., Jagadish C., Characterization of deep levels and carrier compensation created by proton irradiation in undoped GaAs, Journal of Applied Physics, vol. 78, no. 3, pp. 1481–1487 (1995), DOI: 10.1063/1.360237.
- [12] Węgierek P., Billewicz P., Research on Mechanisms of Electric Conduction in the p-Type Silicon Implanted with Ne+ Ions, Proceedings of the IX International Conference ION, Acta Physica Polonica A, vol. 123, no. 5, pp. 948–951 (2013), DOI: 10.12693/APhysPolA.123.948.
- [13] Węgierek P., Billewicz P., Jump Mechanism of Electric Conduction in n-Type Silicon Implanted with Ne++Neon Ions, Acta Physica Polonica A, vol. 120, iss. 1, pp. 122–124 (2011), DOI: 10.12693/APhysPolA.120.122.
- [14] Billewicz P., Węgierek P., Grudniewski T., Turek M., Application of Ion Implantation for Intermediate Energy Levels Formation in the Silicon-Based Structures Dedicated for Photovoltaic Purposes, Acta Physica Polonica A, vol. 132, pp. 274–277 (2017), DOI: 10.12693/APhysPolA.132.274.
- [15] Billewicz P., Węgierek P., Laboratory Stand for Examining the Influence of Environmental Conditions on Electrical Parameters of Photovoltaic Cells, Przegląd Elektrotechniczny, R.92, no. 8, pp. 176–179 (2016), DOI: 10.15199/48.2016.08.48.
- [16] Partyka J., Zukowski P.W., Wegierek P., Rodzik A., Sidorenko Yu.V., Shostak Yu.A., Temperature dependence of the width of the deep-level band in silicon with a high concentration of defects, Semiconductors, vol. 36, no. 12, pp. 1326–1331 (2002).
- [17] Liu Y., Stradins P., Deng H., Luo J., Su-Huai Wei, Suppress carrier recombination by introducing defects: The case of Si solar cell, Applied Physics Letters, vol. 108, no. 3, 022101 (2016).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-96e1a013-a77d-4d30-b528-4d2341cd27ef